留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于煤储层水力压裂动态渗透率变化的压裂效果评价方法及其应用

山拓 孙长彦 王乾 谢相军 范毅刚

山拓,孙长彦,王乾,等. 基于煤储层水力压裂动态渗透率变化的压裂效果评价方法及其应用[J]. 煤田地质与勘探,2022,50(5):57−65. doi: 10.12363/issn.1001-1986.21.09.0536
引用本文: 山拓,孙长彦,王乾,等. 基于煤储层水力压裂动态渗透率变化的压裂效果评价方法及其应用[J]. 煤田地质与勘探,2022,50(5):57−65. doi: 10.12363/issn.1001-1986.21.09.0536
SHAN Tuo,SUN Changyan,WANG Qian,et al. Evaluation method and application of fracturing effect based on dynamic permeability change of coal reservoir hydraulic fracturing[J]. Coal Geology & Exploration,2022,50(5):57−65. doi: 10.12363/issn.1001-1986.21.09.0536
Citation: SHAN Tuo,SUN Changyan,WANG Qian,et al. Evaluation method and application of fracturing effect based on dynamic permeability change of coal reservoir hydraulic fracturing[J]. Coal Geology & Exploration,2022,50(5):57−65. doi: 10.12363/issn.1001-1986.21.09.0536

基于煤储层水力压裂动态渗透率变化的压裂效果评价方法及其应用

doi: 10.12363/issn.1001-1986.21.09.0536
基金项目: 国家自然科学基金项目(41872176);山西省科技攻关计划项目(20191102001)
详细信息
    第一作者:

    山拓,1998年生,男,河南南阳人,硕士研究生,从事非常规天然气勘探开发方面的研究. E-mail:1979177159@qq.com

    通信作者:

    孙长彦,1987年生,男,山东临沂人,博士,讲师,从事煤系气勘探开发研究. E-mail:schy@hpu.edu.cn

  • 中图分类号: TE371

Evaluation method and application of fracturing effect based on dynamic permeability change of coal reservoir hydraulic fracturing

  • 摘要: 压裂施工曲线是反映压裂效果的重要依据,而压裂阶段储层渗透率的动态变化能够更直观地反映造缝效果。借鉴试井渗透率测试原理,建立一种压裂阶段储层动态渗透率定量评价方法,并将该方法应用到准南某区块2口煤层气井水力压裂效果评价中,获得压裂阶段储层动态渗透率曲线;同时采用G函数对压裂效果进一步评价。结果表明:动态渗透率曲线所反映压裂效果与G函数分析和基于排量、井底流压关系的评价结果吻合较好,能够反映储层内裂缝开启、延伸效果;其中,CMG-01井通过实施煤储层与围岩大规模缝网改造,压裂阶段储层渗透率最高达到2.5 μm2,造缝效果良好;而CBM-02井实施煤储层常规水力压裂,储层渗透率保持在1.8 μm2之下,显示出煤储层常规水力压裂与煤储层−围岩大规模缝网改造的差异性。动态渗透率定量评价方法弥补前期压裂改造效果缺乏量化评价的不足,为煤层气/煤系气储层水力压裂工艺的优化提供依据。

     

  • 图  CMG-01井煤系物性特征

    Fig. 1  The physical property characteristics of coal measures in CMG-01 well

    图  CMG-01井453号煤层段压裂施工曲线

    Fig. 2  Hydraulic fracturing curves of the No.453 coal seam section of CMG-01 well

    图  CBM-02井煤系物性特征

    Fig. 3  The physical property characteristics of coal measures in CBM-02 well

    图  CBM-02井43号煤层段压裂施工曲线

    Fig. 4  Hydraulic fracturing curves of the No.43 coal seam section of CBM-02 well

    图  G函数显示裂缝复杂程度

    Fig. 5  G-Function shows complex fractures

    表  1  CMG-01井和CBM-02井改造情况

    Table  1  Stimulation conditions of CMG-01 well and CBM-02 well

    参数CMG-01井CBM-02井
    改造层位煤储层及其围岩煤储层
    压裂方式大规模缝网改造常规水力压裂
    最高排量/
    (m3·min−1)
    1311
    压裂液
    总量/m3
    1 640,1 5001 220
    支撑剂16~30目,20~40目,40~70目16~30目,20~40目
    压裂液类型活性水(清水+1%KCl)活性水(清水+1.5%KCl)
      注:16~30目对应600~1 180 μm,20~40目对应425~850 μm,40~70目对应212~425 μm,下同。
    下载: 导出CSV

    表  2  CMG-01井渗透率计算数据

    Table  2  Permeability calculation data of CMG-01 well

    序号排量
    /(m3·min−1)
    ln*t1ln*t2初始井底
    流压/MPa
    阶段末井底
    流压/MPa
    斜率mp渗透率/μm2
    1 12.86 1.609 2.079 19.50 19.75 1.56 1.374
    2 13.24 1.098 1.945 19.67 17.92 0.95 2.594
    3 13.26 1.791 2.079 19.11 18.79 1.10 2.241
    4 13.02 0.693 1.609 20.68 19.79 0.96 2.173
    5 13.02 1.098 1.386 23.82 24.54 2.49 0.999
    6 13.24 0.693 1.098 31.24 32.54 3.21 0.674
    7 13.19 1.098 1.609 26.08 26.67 1.14 2.048
      注:t1t2分别为压裂初始时间和结束时间,min;*t1=t1/min,*t2=t2/min。
    下载: 导出CSV

    表  3  CBM-02井渗透率计算数据

    Table  3  Permeability calculation data of CBM-02 well

    序号排量
    /(m3·min−1)
    ln*t1ln*t2初始井底
    流压/MPa
    阶段末井底流压/MPa斜率mp/MPa渗透率/μm2
    110.141.0981.38620.1621.581.540.426
    211.140.6931.38619.5419.880.481.738
    311.260.6931.09817.8918.681.930.438
    411.3701.38618.9318.010.661.316
    54.380.6931.09815.8815.101.910.333
    611.070.6931.38615.6916.010.461.816
    711.2500.69314.7115.401.000.860
    811.420.6931.60914.8813.770.681.267
    下载: 导出CSV
  • [1] 路艳军,杨兆中,SHELEPOV V V,等. 煤层气储层压裂现状及展望[J]. 煤炭科学技术,2017,45(6):73−84. LU Yanjun,YANG Zhaozhong,SHELEPOV V V,et al. Status and prospects of coalbed methane reservoir fracturing[J]. Coal Science and Technology,2017,45(6):73−84.
    [2] 王绪性,仲冠宇,郭布民,等. 沁水盆地南部3号煤压裂曲线特征及施工建议[J]. 煤田地质与勘探,2016,44(3):36−39. WANG Xuxing,ZHONG Guanyu,GUO Bumin,et al. Characteristics of fracturing curve of seam No. 3 in south of Qinshui Basin and suggestion about operation[J]. Coal Geology & Exploration,2016,44(3):36−39.. doi: 10.3969/j.issn.1001-1986.2016.03.007
    [3] 张聪,李梦溪,王立龙,等. 沁水盆地南部樊庄区块煤层气井增产措施与实践[J]. 天然气工业,2011,31(11):26−29. ZHANG Cong,LI Mengxi,WANG Lilong,et al. EOR measures for CBM gas wells and their practices in the Fanzhuang block,southern Qinshui Basin[J]. Natural Gas Industry,2011,31(11):26−29.. doi: 10.3787/j.issn.1000-0976.2011.11.007
    [4] 徐刚,彭苏萍,邓绪彪. 煤层气井水力压裂压力曲线分析模型及应用[J]. 中国矿业大学学报,2011,40(2):173−178. XU Gang,PENG Suping,DENG Xubiao. Hydraulic fracturing pressure curve analysis and its application to coalbed methane wells[J]. Journal of China University of Mining & Technology,2011,40(2):173−178.
    [5] 雷毅. 松软煤层井下水力压裂致裂机理及应用研究[D]. 北京: 煤炭科学研究总院, 2014.

    LEI Yi. Study on mechanism and application of hydraulic fracturing in soft seam underground mine[D]. Beijing: China Coal Research Institute, 2014.
    [6] 吴奇,胥云,王腾飞,等. 增产改造理念的重大变革:体积改造技术概论[J]. 天然气工业,2011,31(4):7−12. WU Qi,XU Yun,WANG Tengfei,et al. The revolution of reservoir stimulation:An introduction of volume fracturing[J]. Natural Gas Industry,2011,31(4):7−12.. doi: 10.3787/j.issn.1000-0976.2011.04.002
    [7] 苏现波, 马耕, 宋金星, 等. 煤系气储层缝网改造技术及应用[M]. 北京: 科学出版社, 2017.
    [8] 吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报,2014,35(4):706−714. WU Qi,XU Yun,ZHANG Shouliang,et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica,2014,35(4):706−714.. doi: 10.7623/syxb201404011
    [9] 陈作,薛承瑾,蒋廷学,等. 页岩气井体积压裂技术在我国的应用建议[J]. 天然气工业,2010,30(10):30−32. CHEN Zuo,XUE Chengjin,JIANG Tingxue,et al. Proposals for the application of fracturing by stimulated reservoir volume (SRV) in shale gas wells in China[J]. Natural Gas Industry,2010,30(10):30−32.. doi: 10.3787/j.issn.1000-0976.2010.10.007
    [10] 薛海飞,朱光辉,王伟,等. 沁水盆地柿庄区块煤层气井压裂增产效果关键影响因素分析与实践[J]. 煤田地质与勘探,2019,47(4):76−81. XUE Haifei,ZHU Guanghui,WANG Wei,et al. Analysis and application of key influencing factors of CBM well fracturing effects in Shizhuang area,Qinshui Basin[J]. Coal Geology & Exploration,2019,47(4):76−81.. doi: 10.3969/j.issn.1001-1986.2019.04.012
    [11] SU Xianbo,WANG Qian,LIN Haixiao,et al. A combined stimulation technology for coalbed methane wells:Part 1. Theory and technology[J]. Fuel,2018,233:592−603.. doi: 10.1016/j.fuel.2018.06.087
    [12] SU Xianbo,WANG Qian,LIN Haixiao,et al. A combined stimulation technology for coalbed methane wells:Part 2. application[J]. Fuel,2018,233:539−551.. doi: 10.1016/j.fuel.2018.06.086
    [13] 王乾. 淮北某区块煤层气井二次改造关键技术[D]. 焦作: 河南理工大学, 2017.

    WANG Qian. The key technologies of secondary stimulation for coalbed methane well in a block of Huaibei[D]. Jiaozuo: Henan Polytechnic University, 2017.
    [14] SUN Bin,JU Yiwen,LU Shuangfang,et al. Reconstruction evaluation method and application of coal measure three gases co–mining reservoirs in Linxing block,East Ordos Basin[J]. Advances in Geosciences,2020,10(2):85−99.. doi: 10.12677/AG.2020.102010
    [15] CHONG K K, GRIESER B. A completions roadmap to shale–play development: A review of successful approaches toward shale–play stimulation in the last two decades[R]. Society of Petroleum Engineers, Beijing, SPE–130369, 2010.
    [16] 沈永星,冯增朝,周动,等. 天然裂缝对页岩储层水力裂缝扩展影响数值模拟研究[J]. 煤炭科学技术,2021,49(8):195−202. SHEN Yongxing,FENG Zengchao,ZHOU Dong,et al. Study on numerical simulation of effect on natural fractures to hydraulic fracture propagation in shale reservoirs[J]. Coal Science and Technology,2021,49(8):195−202.
    [17] 张晓娜,康永尚,姜杉钰,等. 沁水盆地柿庄区块3号煤层压裂曲线类型及其成因机制[J]. 煤炭学报,2017,42(增刊2):441−451. ZHANG Xiaona,KANG Yongshang,JIANG Shanyu,et al. Fracturing curve types and their formation mechanism of coal seam 3 in Shizhuang block,Qinshui Basin[J]. Journal of China Coal Society,2017,42(Sup.2):441−451.
    [18] 张永成,郝海金,李兵,等. 煤层气水平井微地震成像裂缝监测应用研究[J]. 煤田地质与勘探,2018,46(4):67−71. ZHANG Yongcheng,HAO Haijin,LI Bing,et al. Application of microseismic monitoring and imaging of fractures in horizontal CBM well[J]. Coal Geology & Exploration,2018,46(4):67−71.. doi: 10.3969/j.issn.1001-1986.2018.04.011
    [19] 毛国扬,胡永全,赵金洲,等. 裂缝性油藏压后压降分析[J]. 断块油气田,2009,16(1):69−71. MAO Guoyang,HU Yongquan,ZHAO Jinzhou,et al. Pressure decline curve analysis of naturally fractured reservoir after being fractured[J]. Fault Block Oil & Gas Field,2009,16(1):69−71.
    [20] BARREE R D, MISKIMINS J L, GILBERT J V. Diagnostic fracture injection tests: Common mistakes, misfires, and misdiagnoses[J]. SPE 169539, 2014.
    [21] 李传亮. 油藏工程原理(第二版)[M]. 北京: 石油工业出版社, 2011.
    [22] 王聚团,刘银山,黄志明,等. G函数压降分析方法优化及应用[J]. 非常规油气,2020,7(4):81−84. WANG Jutuan,LIU Yinshan,HUANG Zhiming,et al. Pressure drop analysis methods for small–scale fracturing[J]. Unconventional Oil & Gas,2020,7(4):81−84.
    [23] 王兴文. 裂缝性油藏压裂压力递减分析研究与应用[D]. 成都: 西南石油学院, 2004.

    WANG Xingwen. Research and application of fracturing pressure decline analysis in fractured reservoirs[D]. Chengdu: Southwest Petroleum Institute, 2004.
    [24] NOLTE K G. Determination of fracture parameters from fracturing pressure decline[R]. SPE 8341, 1979.
    [25] NOLTE K G, MANIERE J L, OWENS K A. After–closure analysis of fracture calibration tests[R]. SPE 38676, 1997.
    [26] 赵文,张遂安,孙志宇,等. 基于G函数曲线分析的压后裂缝复杂性评估研究[J]. 科学技术与工程,2016,16(33):1671−1815. ZHAO Wen,ZHANG Suian,SUN Zhiyu,et al. Evaluative research for the fracture complexity after fracturing based on the G–function curves analysis[J]. Science Technology and Engineering,2016,16(33):1671−1815.
    [27] 毛国扬,杨怀成,张文正. 裂缝性储层压降分析方法及其应用[J]. 石油天然气学报,2011,33(7):116−118. MAO Guoyang,YANG Huaicheng,ZHANG Wenzheng. Pressure drow down analysis method and its application in fractured reservoir[J]. Journal of Oil and Gas Technology,2011,33(7):116−118.. doi: 10.3969/j.issn.1000-9752.2011.07.027
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  34
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-12-20
  • 发布日期:  2022-05-25
  • 网络出版日期:  2022-05-05

目录

    /

    返回文章
    返回