Research status and prospects of secondary enrichment and accumulation of residual coalbed methane resources in abandoned mines
-
摘要: 在当前国家大力推进“双碳目标”落实阶段,废弃矿井遗留煤层气资源开发具有重要的现实意义。然而,废弃矿井遗留煤层气资源开发具有其独特性,源于其在原始地质条件下扰动后的二次动态成藏。通过综述近些年国内外研究成果得出:(1)煤层开采覆岩及底板扰动区可以依次分为导气裂隙带、卸压带及不易解吸带,长臂法开采煤层覆岩采动影响范围可达到100 m左右,底板采动影响范围可达到50 m左右。(2)遗留煤层气资源主要以游离态、吸附态及溶解态赋存于开采扰动区内,与原位储层相比游离气占比增大。依据开采扰动应力场–裂隙场–渗流场分布规律,可将遗留煤层气赋存空间分为:三维卸压带、一维卸压带、原始位区,覆岩三维卸压带顶部为潜在煤层气富集区。(3)废弃矿井煤层气资源量评估方法主要有月下降曲线法、分源叠加法及间接扣减法,后2种方法在国内有较高的适用性。最后指出准确圈定遗留煤层气富集空间及其采动裂隙场,揭示遗留煤层气的赋存特征及其动态运聚过程,建立遗留煤层气资源量的动态评价模型是废弃矿井遗留煤层气资源成功开发的地质理论基础,也是今后的重点研究方向。Abstract: In promoting the achievement of the carbon peak and carbon neutrality goals in China, the development of residual coalbed methane resources in abandoned mines is of important practical significance. However, the development of the residual coalbed methane is characterized by its secondary dynamic reservoir formation after disturbed under original geological conditions. Therefore, the related literature at home and abroad in recent years is summarized as follows. (1) The disturbed area of the overburden and floor in coal seam mining can be divided into the gas conduction fracture zone, pressure relief zone and non-desorption zone. The influence range of coal seam overburden mining by the long arm method can reach about 100 m, and the influence range of floor mining can reach about 50 m. (2) The residual coalbed methane resources in the mining disturbed area are mainly in the free state, adsorbed state and dissolved state, and the proportion of free gas increases compared with the in-situ reservoir. According to the distribution law of the mining disturbed stress field, fracture field, seepage field, the storage space of residual coalbed methane can be divided into the three-dimensional pressure relief zone, one-dimensional pressure relief zone and original location area. The top of the three-dimensional pressure relief zone of the overburden is the potential coalbed methane enrichment area. (3) The evaluation methods of residual coalbed methane resources in abandoned mines mainly include the monthly decline curve method, source superposition method and indirect deduction method. The latter two methods have high applicability in China. Finally, it is pointed out that accurately delineating the enrichment space and mining fracture field of residual coalbed methane, revealing its occurrence characteristics and dynamic migration and accumulation process, and establishing its dynamic evaluation model are the geological theoretical basis for the successful development of residual coalbed methane resources in abandoned mines.
-
表 1 废弃矿井遗留煤层气资源量主要计算方法及优缺点
Table 1 Main calculation methods, advantages and disadvantages of CBM resources left over from abandoned mines
-
[1] 袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20. YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20. [2] 彭金刚. 鸡西、鹤岗矿区封闭采空区煤层气资源评价[D]. 徐州: 中国矿业大学, 2017.PENG Jingang. Resource evaluation of closed gob CBM (coalbed methane) in Hegang and Jixi mining area[D]. Xuzhou: China University of Mining and Technology, 2017. [3] HOLLA L,BUIZEN M. The ground movement,strata fracturing and changes in permeability due to deep longwall mining[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(2/3):207−217. [4] 刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报,1995,20(1):1−5. LIU Tianquan. Influence of mining activities on mine rockmass and control engineering[J]. Journal of China Coal Society,1995,20(1):1−5. [5] YAVUZ H. An estimation method for cover pressure reestablishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(2):193−205. doi: 10.1016/S1365-1609(03)00082-0 [6] ISLAM M R,HAYASHI D,KAMRUZZAMAN A B M. Finite element modeling of stress distributions and problems for multi–slice longwall mining in Bangladesh,with special reference to the Barapukuria coal mine[J]. International Journal of Coal Geology,2009,78(2):91−109. doi: 10.1016/j.coal.2008.10.006 [7] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762−769. XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water–conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762−769. [8] 陈荣华,白海波,冯梅梅. 综放面覆岩导水裂隙带高度的确定[J]. 采矿与安全工程学报,2006,23(2):220−223. CHEN Ronghua,BAI Haibo,FENG Meimei. Determination of the height of water flowing fractured zone in overburden strata above fully–mechanized top–coal caving face[J]. Journal of Mining & Safety Engineering,2006,23(2):220−223. doi: 10.3969/j.issn.1673-3363.2006.02.021 [9] 徐光,许家林,吕维赟,等. 采空区顶板导水裂隙侧向边界预测及应用研究[J]. 岩土工程学报,2010,32(5):724−730. XU Guang,XU Jialin,LYU Weiyun,et al. Lateral boundary prediction of water conducting fracture formed in roof and its application[J]. Chinese Journal of Geotechnical Engineering,2010,32(5):724−730. [10] 屈庆栋. 采动上覆瓦斯卸压运移的“三带”理论及其应用研究[D]. 徐州: 中国矿业大学, 2010.QU Qingdong. Study on“three zones”theory and its application of gas pressure relief and migration over mining[D]. Xuzhou: China University of Mining and Technology, 2010. [11] 吴仁伦. 煤层群开采瓦斯卸压抽采“三带”范围的理论研究[D]. 徐州: 中国矿业大学, 2011.WU Renlun. Study on the scope of the“three zones” of gas pressure relief and extraction in coal seam group mining[D]. Xuzhou: China University of Mining and Technology, 2011. [12] 李日富,赵国栋. 采动影响稳定区煤层气储层空间计算方法[J]. 矿业安全与环保,2013,40(2):8−11. LI Rifu,ZHAO Guodong. Calculation method of coal–bed methane reservoir space in stable mining–affected region[J]. Mining Safety & Environmental Protection,2013,40(2):8−11. doi: 10.3969/j.issn.1008-4495.2013.02.005 [13] 杨威. 煤层采场力学行为演化特征及瓦斯治理技术研究[D]. 徐州: 中国矿业大学, 2013.YANG Wei. Mechanical behavior evolution of mining stope and gas control technology[D]. Xuzhou: China University of Mining and Technology, 2013. [14] 姜耀东,吕玉凯,赵毅鑫,等. 承压水上开采工作面底板破坏规律相似模拟试验[J]. 岩石力学与工程学报,2011,30(8):1571−1578. JIANG Yaodong,LYU Yukai,ZHAO Yixin,et al. Similar simulation test for breakage law of working face floor in coal mining above aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1571−1578. [15] 张勇,张春雷,赵甫. 近距离煤层群开采底板不同分区采动裂隙动态演化规律[J]. 煤炭学报,2015,40(4):786−792. ZHANG Yong,ZHANG Chunlei,ZHAO Fu. Dynamic evolution rules of mining–induced fractures in different floor area of short–distance coal seams[J]. Journal of China Coal Society,2015,40(4):786−792. [16] 张蕊,姜振泉,李秀晗,等. 大采深厚煤层底板采动破坏深度[J]. 煤炭学报,2013,38(1):67−72. ZHANG Rui,JIANG Zhenquan,LI Xiuhan,et al. Study on the failure depth of thick seam floor in deep mining[J]. Journal of China Coal Society,2013,38(1):67−72. [17] SINGH A K,SINGH R,MAITI J,et al. Assessment of mining induced stress development over coal pillars during depillaring[J]. International Journal of Rock Mechanics & Mining Sciences,2011,48(5):805−818. [18] 孟召平,张纪星,刘贺,等. 考虑应力敏感性的煤层气井产能模型及应用分析[J]. 煤炭学报,2014,39(4):593−599. MENG Zhaoping,ZHANG Jixing,LIU He,et al. Productivity model of CBM wells considering the stress sensitivity and its application analysis[J]. Journal of China Coal Society,2014,39(4):593−599. [19] 钱鸣高. 采场围岩控制理论与实践[J]. 矿山压力与顶板管理,1999(3/4):12−15. QIAN Minggao. Theory and practice of stope surrounding rock control[J]. Ground Pressure and Strata Control,1999(3/4):12−15. [20] ADHIKARY D P,GUO Hua. Modelling of longwall mining–induced strata permeability change[J]. Rock Mechanics and Rock Engineering,2015,48(1):345−359. doi: 10.1007/s00603-014-0551-7 [21] 孟召平,张娟,师修昌,等. 煤矿采空区岩体渗透性计算模型及其数值模拟分析[J]. 煤炭学报,2016,41(8):1997−2005. MENG Zhaoping,ZHANG Juan,SHI Xiuchang,et al. Calculation model of rock mass permeability in coal mine goaf and its numerical simulation analysis[J]. Journal of China Coal Society,2016,41(8):1997−2005. [22] 袁亮,郭华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357−365. YUAN Liang,GUO Hua,SHEN Baotang,et al. Circular overlying zone at longwall panel for efficient methane capture of multiple coal seams with low permeability[J]. Journal of China Coal Society,2011,36(3):357−365. [23] POULSEN B A,ADHIKARY D,GUO Hua. Simulating mining–induced strata permeability changes[J]. Engineering Geology,2018,237:208−216. doi: 10.1016/j.enggeo.2018.03.001 [24] 宋颜金,程国强,郭惟嘉. 采动覆岩裂隙分布及其空隙率特征[J]. 岩土力学,2011,32(2):533−536. SONG Yanjin,CHENG Guoqiang,GUO Weijia. Study of distribution of overlying strata fissures and its porosity characteristics[J]. Rock and Soil Mechanics,2011,32(2):533−536. doi: 10.3969/j.issn.1000-7598.2011.02.034 [25] 许家林. 岩层采动裂隙分布理论与应用[M]. 徐州: 中国矿业大学出版社, 2011. [26] 韩保山,张新民,张群. 废弃矿井煤层气资源量计算范围研究[J]. 煤田地质与勘探,2004,32(1):29−31. HAN Baoshan,ZHANG Xinmin,ZHANG Qun. Theoretical study on calculation limits of CBM resource of abandoned coal mine[J]. Coal Geology & Exploration,2004,32(1):29−31. doi: 10.3969/j.issn.1001-1986.2004.01.010 [27] 尹志胜,桑树勋,周效志. 煤炭资源枯竭矿井煤层气运移及富集规律研究[J]. 特种油气藏,2014,21(5):48−51. YIN Zhisheng,SANG Shuxun,ZHOU Xiaozhi. Study on migration and enrichment regularities of CBM in exhausted coal resource wells[J]. Special Oil & Gas Reservoirs,2014,21(5):48−51. doi: 10.3969/j.issn.1006-6535.2014.05.011 [28] 魏庆喜,刘丽民. 废弃矿井煤层气来源及赋存状态[J]. 科技情报开发与经济,2008,18(16):119−121. WEI Qingxi,LIU Limin. The origins and occurrence states of coal–bed methane in abandoned mine[J]. Sci–tech Information Development & Economy,2008,18(16):119−121. [29] 韩保山. 废弃矿井煤层气储层描述[J]. 煤田地质与勘探,2005,33(2):32−34. HAN Baoshan. Reservoir characterization of abandoned mine methane(AMM)[J]. Coal Geology & Exploration,2005,33(2):32−34. doi: 10.3969/j.issn.1001-1986.2005.02.010 [30] 李树刚,赵鹏翔,林海飞,等. 煤岩瓦斯“固–气”耦合物理模拟相似材料特性实验研究[J]. 煤炭学报,2015,40(1):80−86. LI Shugang,ZHAO Pengxiang,LIN Haifei,et al. Study on character of physical simulation similar material of coal–rock and gas solid–gas coupling[J]. Journal of China Coal Society,2015,40(1):80−86. [31] 魏建平,秦恒洁,王登科,等. 含瓦斯煤渗透率动态演化模型[J]. 煤炭学报,2015,40(7):1555−1561. WEI Jianping,QIN Hengjie,WANG Dengke,et al. Dynamic permeability model for coal containing gas[J]. Journal of China Coal Society,2015,40(7):1555−1561. [32] 张东明,齐消寒,宋润权,等. 采动裂隙煤岩体应力与瓦斯流动的耦合机理[J]. 煤炭学报,2015,40(4):774−780. ZHANG Dongming,QI Xiaohan,SONG Runquan,et al. Coupling mechanism of rock mass stress and gas flow in coal mining fissures[J]. Journal of China Coal Society,2015,40(4):774−780. [33] 林柏泉,刘厅,杨威. 基于动态扩散的煤层多场耦合模型建立及应用[J]. 中国矿业大学学报,2018,47(1):32−39. LIN Baiquan,LIU Ting,YANG Wei. Solid–gas coupling model for coalseams based on dynamic diffusion and its application[J]. Journal of China University of Mining & Technology,2018,47(1):32−39. [34] 赵洪宝,潘卫东,汪昕. 开采薄煤层采空区瓦斯分布规律数值模拟研究[J]. 煤炭学报,2011,36(增刊2):440−443. ZHAO Hongbao,PAN Weidong,WANG Xin. Numerical simulation on distribution of gas concentration in goaf under condition of mining thin coal seam[J]. Journal of China Coal Society,2011,36(Sup.2):440−443. [35] 胡胜勇,张甲雷,冯国瑞,等. 煤矿采空区瓦斯富集机制研究[J]. 中国安全科学学报,2016,26(2):121−126. HU Shengyong,ZHANG Jialei,FENG Guorui,et al. Research on methane enrichment mechanism in coal mine goaf[J]. China Safety Science Journal,2016,26(2):121−126. [36] 张江华,李国富,孟召平,等. 过采空区煤层气井地面抽采关键技术[J]. 煤炭学报,2020,45(7):2552−2561. ZHANG Jianghua,LI Guofu,MENG Zhaoping,et al. Key technology of surface extraction for coalbed methane wells crossing goaf[J]. Journal of China Coal Society,2020,45(7):2552−2561. [37] KUNZ E, SCHL(U| ¨)TER R. Abandoned mine methane in Germany–gas potential assessment and drilling experiences[C]//国家煤矿安全监察局、美国环保局、日本新能源机构. 2005第五届国际煤层气论坛暨第一届中日煤炭技术研讨会“国际甲烷市场化合作计划”中国地区会议论文集. 2005: 237–241. [38] PALCHIK V. Time–dependent methane emission from vertical prospecting boreholes drilled to abandoned mine workings at a shallow depth[J]. International Journal of Rock Mechanics & Mining Sciences,2014,72:1−7. [39] KARACAN C Ö,WARWICK P D. Assessment of coal mine methane(CMM) and abandoned mine methane(AMM) resource potential of longwall mine panels:Example from northern Appalachian basin,USA[J]. International Journal of Coal Geology,2019,208:37−53. doi: 10.1016/j.coal.2019.04.005 [40] 李日富. 采动影响稳定区煤层气储层及资源量评估技术的研究与应用[D]. 重庆: 重庆大学, 2014.LI Rifu. Study on the reservoir and resource evaluation technique of CBM in the stabilization region after mining[D]. Chongqing: Chongqing University, 2014. [41] 张大旺,黄华州,张超,等. 资源枯竭矿区煤层气选区评价[J]. 煤炭技术,2017,36(5):60−63. ZHANG Dawang,HUANG Huazhou,ZHANG Chao,et al. Evaluation and area selection of CBM in coal resource–exhausted mining area[J]. Coal Technology,2017,36(5):60−63. [42] 韩保山,李健武,董敏涛. 用下降曲线估算废弃矿井煤层气资源量[J]. 中国煤田地质,2005,17(5):37−39. HAN Baoshan,LI Jianwu,DONG Mintao. Estimation of abandoned mine CBM resources through drop–down curves[J]. Coal Geology of China,2005,17(5):37−39. [43] 周建军,虎维岳,侯大勇. 废弃矿井地下水淹没过程的水流与水位数值模拟[J]. 煤田地质与勘探,2011,39(4):28−31. ZHOU Jianjun,HU Weiyue,HOU Dayong. Numerical simulation of groundwater rebound process and water table value in abandoned mines[J]. Coal Geology & Exploration,2011,39(4):28−31. doi: 10.3969/j.issn.1001-1986.2011.04.008 [44] 孟召平,师修昌,刘珊珊,等. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报,2016,41(3):537−544. MENG Zhaoping,SHI Xiuchang,LIU Shanshan,et al. Evaluation model of CBM resources in abandoned coal mine and its application[J]. Journal of China Coal Society,2016,41(3):537−544. [45] 秦伟,许家林,胡国忠,等. 老采空区瓦斯储量预测方法研究[J]. 煤炭学报,2013,38(6):948−953. QIN Wei,XU Jialin,HU Guozhong,et al. Study on computing method of old goaf methane reserves[J]. Journal of China Coal Society,2013,38(6):948−953. [46] 文光才,孙海涛,李日富,等. 煤矿采动稳定区煤层气资源评估方法及其应用[J]. 煤炭学报,2018,43(1):160−167. WEN Guangcai,SUN Haitao,LI Rifu,et al. Assessment method and application of coalbed methane resources in coal mining stability area[J]. Journal of China Coal Society,2018,43(1):160−167. -