留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国煤中有害微量元素含量的空间分布

曹庆一 任文颖 梁朝铭 张宇飞 杨柳

曹庆一,任文颖,梁朝铭,等. 中国煤中有害微量元素含量的空间分布[J]. 煤田地质与勘探,2022,50(5):13−22. doi: 10.12363/issn.1001-1986.21.09.0520
引用本文: 曹庆一,任文颖,梁朝铭,等. 中国煤中有害微量元素含量的空间分布[J]. 煤田地质与勘探,2022,50(5):13−22. doi: 10.12363/issn.1001-1986.21.09.0520
CAO Qingyi,REN Wenying,LIANG Chaoming,et al. Spatial distribution of harmful trace elements in Chinese coals[J]. Coal Geology & Exploration,2022,50(5):13−22. doi: 10.12363/issn.1001-1986.21.09.0520
Citation: CAO Qingyi,REN Wenying,LIANG Chaoming,et al. Spatial distribution of harmful trace elements in Chinese coals[J]. Coal Geology & Exploration,2022,50(5):13−22. doi: 10.12363/issn.1001-1986.21.09.0520

中国煤中有害微量元素含量的空间分布

doi: 10.12363/issn.1001-1986.21.09.0520
基金项目: 国家重点基础研究发展计划(973计划)子课题(2014CB238906-01);中央高校基本科研业务费项目(2021YJSDC10)
详细信息
    第一作者:

    曹庆一,1994年生,男,河南驻马店人,博士研究生,从事环境地质学领域的研究. E-mail:qyc5411@126.com

    通信作者:

    杨柳,1978年生,女,辽宁铁岭人,博士,教授,博士生导师,研究方向为3S技术应用、水资源保护等. E-mail:yang_l@126.com

  • 中图分类号: TD861;X142

Spatial distribution of harmful trace elements in Chinese coals

  • 摘要: 煤中有害微量元素对生态环境和人体健康的潜在影响是地球化学和能源环境领域研究的热点之一,地球化学制图对深刻理解地球化学过程及其变化规律具有重要作用。目前,尚缺乏中国煤中有害微量元素含量的空间分布图。通过对中国煤炭样品中1 167个Be、1 315个Co、1 406个Cu、1 191个Mo、1 247个Th 和1 390个Zn含量数据进行统计分析,测算中国煤中Be、Co、Cu、Mo、Th 和 Zn 的平均含量,并利用ArcGIS技术绘制中国煤中Be、Co、Cu、Mo、Th、Zn的含量地球化学空间分布地图。结果表明:中国煤中有害微量元素含量跨度大,数据分布呈正偏性,不符合正态分布特征;中国煤中Be、Co、Cu、Mo、Th和Zn 的平均含量分别为2.10、5.53、21.36、2.19、7.35和30.02 mg/kg;各元素含量的空间分布极不均匀;煤中有害微量元素含量空间分布格局是多种因素综合作用的结果,如物源区母岩、热液作用、水运移作用等,其中热液作用是煤中有害微量元素异常富集的典型特征。研究成果可为煤中微量元素研究和环境管理提供直观有效的参考。

     

  • 图  中国煤炭样品中 Be、Co、Cu、Mo、Th 和 Zn 的含量频率分布

    Fig. 1  Concentration frequency distribution of Be, Co, Cu, Mo, Th and Zn in Chinese coals

    煤中 Be、Co、Cu、Mo、Th和Zn含量数据转换箱线图

    2  Box plot representing the lg-transformed concentration distribution of Be, Co, Cu, Mo, Th, and Zn in Chinese coals

    图  中国含煤区和成煤时代分布

    Fig. 3  Distribution of coal-bearing areas and coal-forming periods in China

    图  中国煤中Be的空间分布

    注:图例中色柱两侧数值含义:≤7.51 mg/kg的样品占比88%;≤3.60 mg/kg的样品占比75%;≤2.00 mg/kg的样品占比50%;≤1.00 mg/kg的样品占比25%;≤0.51 mg/kg的样品占比10%;图5图9含义相同

    Fig. 4  Spatial distribution map of Be in Chinese coals

    图  中国煤中Co的空间分布

    Fig. 5  Spatial distribution map of Co in Chinese coals

    图  中国煤中Cu的空间分布

    Fig. 6  Spatial distribution map of Cu in Chinese coals

    图  中国煤中Mo的空间分布

    Fig. 7  Spatial distribution map of Mo in Chinese coals

    图  中国煤中Th的空间分布

    Fig. 8  Spatial distribution map of Th in Chinese coals

    图  中国煤中Zn的空间分布

    Fig. 9  Spatial distribution map of Zn in Chinese coals

    图  10  不同省(自治区、直辖市)煤中Be、Co、Cu、Mo、Th和Zn的平均含量

    Fig. 10  Average concentration of Be, Co, Cu, Mo, Th and Zn in coals in different regions

    表  1  样品数据统计指标

    Table  1  Statistical indicators of sample data

    指标BeCoCuMoThZn备注
    样品数量 1167 1315 1406 1191 1247 1390 原始数据
    标准差σ 31.17 17.10 37.44 47.67 18.79 58.69
    变异系数cv 4.10 1.88 1.31 3.94 2.07 1.34
    含量范围和算术平均值/(mg·kg−1) 0~542/7.61 0~250/9.11 0~559/28.66 0~665/12.10 0~581/9.08 0~865/43.70
    Q3 (25%)/(mg·kg−1) 1 1.90 8.10 0.90 2.58 12.85
    Q2 (50%)/(mg·kg−1) 2 4.30 16.71 1.85 5.69 24.76
    Q1 (75%)/(mg·kg−1) 3.63 10.25 36.77 4.91 12.13 50.47
    样品数量 1002 1190 1306 984 1162 1255 剔除异
    常值后
    的数据
    标准差σ 1.65 5.05 18.05 2.12 6.27 24.49
    变异系数cv 0.78 0.91 0.85 0.97 0.85 0.82
    含量范围和算术平均值/(mg·kg−1) 0.05~7.51/2.10 0.04~22.73/5.53 0.06~78.5/21.36 0.01~10.6/2.19 0.04~26.1/7.35 0.38~106/30.02
    元素平均含量
    /(mg·kg−1)
    Dai Shifeng等[22] 2.11 7.08 17.5 3.08 5.84 41.4
    任德贻等[23] 2.13 7.05 18.35 3.11 5.81 42.18
    唐修义等[24] 1.90 7.00 13.00 4.00 6.00 38.00
    白向飞等[25] 1.75 10.62 17.87 2.70 5.88
    下载: 导出CSV
  • [1] XIE Xuejing,WANG Xueqiu,CHENG Hangxin,et al. Digital element earth[J]. Acta Geologica Sinica(English Edition),2011,85(1):1−16.. doi: 10.1111/j.1755-6724.2011.00375.x
    [2] WANG Xueqiu,ZHANG Bimin,NIE Lanshi,et al. Mapping chemical earth program:Progress and challenge[J]. Journal of Geochemical Exploration,2020,217:106578.
    [3] WANG Xueqiu,ZHANG Qin,ZHOU Guohua. National−scale geochemical mapping projects in China[J]. Geostandards and Geoanalytical Research,2007,31(4):311−320.. doi: 10.1111/j.1751-908X.2007.00128.x
    [4] KYSER K,BARR J,IHLENFELD C. Applied geochemistry in mineral exploration and mining[J]. Elements,2015,11(4):241−246.. doi: 10.2113/gselements.11.4.241
    [5] 王学求, 徐善法, 聂兰仕, 等. 全球一张地球化学图与全球资源环境评价[C]//中国地质学会. 中国地质学会2015学术年会论文摘要汇编(中册). 北京: 中国地质学会地质学报编辑部, 2015.
    [6] LADENBERGER A,DEMETRIADES A,REIMANN C,et al. GEMAS:Indium in agricultural and grazing land soil of Europe:Its source and geochemical distribution patterns[J]. Journal of Geochemical Exploration,2015,154:61−80.. doi: 10.1016/j.gexplo.2014.11.020
    [7] CICCHELLA D,GIACCIO L,DINELLI E,et al. GEMAS:Spatial distribution of chemical elements in agricultural and grazing land soil of Italy[J]. Journal of Geochemical Exploration,2015,154:129−142.. doi: 10.1016/j.gexplo.2014.11.009
    [8] XIE Xuejing,WANG Xueqiu,ZHANG Qin,et al. Multi–scale geochemical mapping in China[J]. Geochemistry:Exploration,Environment,Analysis,2008,8(3/4):333−341.
    [9] FEOKTISTOV V M,KHARIN V N,SPECTOR E N. Studying precipitation chemistry by multivariate analysis based on data of rural stations in Russian Barents Region[J]. Water Resources,2014,41(4):421−430.. doi: 10.1134/S0097807814040058
    [10] DAVID B S. Geochemical studies of North American soils:Results from the pilot study phase of the North American Soil Geochemical Landscapes Project[J]. Applied Geochemistry,2009,24(8):1355−1356.. doi: 10.1016/j.apgeochem.2009.04.006
    [11] JIANG Ping,YANG Hufang,MA Xuejiao. Coal production and consumption analysis,and forecasting of related carbon emission:Evidence from China[J]. Carbon Management,2019,10(2):189−208.. doi: 10.1080/17583004.2019.1577177
    [12] CHEN Hong,LI Li,LEI Yalin,et al. Public health effect and its economics loss of PM2.5 pollution from coal consumption in China[J]. Science of the Total Environment,2020,732:138973.. doi: 10.1016/j.scitotenv.2020.138973
    [13] CAO Qingyi,YANG Liu,QIAN Yahui,et al. Study on mercury species in coal and pyrolysis–based mercury removal before utilization[J]. ACS Omega,2020,5(32):20215−20223.. doi: 10.1021/acsomega.0c01875
    [14] TONG Yali,YUE Tao,GAO Jiajia,et al. Partitioning and emission characteristics of Hg,Cr,Pb and as among air pollution control devices in Chinese coal−fired industrial boilers[J]. Energy and Fuels,2020,34(6):7067−7075.. doi: 10.1021/acs.energyfuels.0c01200
    [15] WANG Jinxi,YANG Zhen,QIN Shenjun,et al. Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants[J]. Fuel,2019,258:116062.. doi: 10.1016/j.fuel.2019.116062
    [16] CHANG Lin,YANG Jianping,ZHAO Yongchun,et al. Behavior and fate of As,Se,and Cd in an ultra–low emission coal–fired power plant[J]. Journal of Cleaner Production,2019,209:722−730.. doi: 10.1016/j.jclepro.2018.10.270
    [17] JIA Jianli,LI Xiaojun,WU Peijing,et al. Human health risk assessment and safety threshold of harmful trace elements in the soil environment of the Wulantuga open–cast coal mine[J]. Minerals,2015,5(4):837−848.. doi: 10.3390/min5040528
    [18] YAO Enqin,GUI Herong. Four trace elements contents of water environment of mining subsidence in the Huainan diggings,China[J]. Environmental Monitoring and Assessment,2008,146(1/2/3):203−210.
    [19] CAO Qingyi,YANG Liu,REN Wenying,et al. Spatial distribution of harmful trace elements in Chinese coalfields:An application of WebGIS technology[J]. Science of the Total Environment,2020,755:142527.
    [20] YANG Liu,BAI Xue,HU Yinjie,et al. Construction of trace element in coal of China database management system:Based on WebGIS[J]. Sains Malaysiana,2017,46(11):2195−2204.. doi: 10.17576/jsm-2017-4611-21
    [21] OSGeo中国中心. 中国煤炭资源(1∶3 200万)在线地图[EB/OL]. (2020–02–17) [2021–09–15]. https://www.osgeo.cn/map/m01c8.
    [22] DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21.. doi: 10.1016/j.coal.2011.02.003
    [23] 任德贻, 赵峰华, 代世峰, 等. 煤的微量元素地球化学[M]. 北京: 科学出版社, 2006.
    [24] 唐修义, 黄文辉. 中国煤中微量元素[M]. 北京: 商务印书馆, 2004.
    [25] 白向飞,李文华,陈亚飞,等. 中国煤中微量元素分布基本特征[J]. 煤质技术,2007(1):1−4. BAI Xiangfei,LI Wenhua,CHEN Yafei,et al. The general distributions of trace elements in Chinese coals[J]. Coal Quality Technology,2007(1):1−4.. doi: 10.3969/j.issn.1007-7677.2007.01.001
    [26] KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148.. doi: 10.1016/j.coal.2009.01.002
    [27] 任德贻,赵峰华,张军营,等. 煤中有害微量元素富集的成因类型初探[J]. 地学前缘,1999,6(增刊1):17−22. REN Deyi,ZHAO Fenghua,ZHANG Junying,et al. A preliminary study on genetic type of enrichment for hazardous minor and trace elements in coal[J]. Earth Science Frontiers,1999,6(Sup.1):17−22.
    [28] REN Deyi,ZHAO Fenghua,WANG Yunquan,et al. Distributions of minor and trace elements in Chinese coals[J]. International Journal of Coal Geology,1999,40:109−118.. doi: 10.1016/S0166-5162(98)00063-9
    [29] 刘桂建,彭子成,杨萍玥,等. 煤中微量元素富集的主要因素分析[J]. 煤田地质与勘探,2001,29(4):1−4. LIU Guijian,PENG Zicheng,YANG Pingyue,et al. Mian factors controlling concentration of trace element in coal[J]. Coal Geology & Exploration,2001,29(4):1−4.. doi: 10.3969/j.issn.1001-1986.2001.04.001
    [30] CAO Qingyi,YANG Liu,REN Wenying,et al. Environmental geochemical maps of harmful trace elements in Chinese coalfields[J]. Science of the Total Environment,2021,799:149475.. doi: 10.1016/j.scitotenv.2021.149475
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  40
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-17
  • 修回日期:  2021-11-16
  • 刊出日期:  2022-05-25
  • 网络出版日期:  2022-03-23

目录

    /

    返回文章
    返回