-
摘要:
煤中有害微量元素对生态环境和人体健康的潜在影响是地球化学和能源环境领域研究的热点之一,地球化学制图对深刻理解地球化学过程及其变化规律具有重要作用。目前,尚缺乏中国煤中有害微量元素含量的空间分布图。通过对中国煤炭样品中1 167个Be、1 315个Co、1 406个Cu、1 191个Mo、1 247个Th 和1 390个Zn含量数据进行统计分析,测算中国煤中Be、Co、Cu、Mo、Th 和 Zn 的平均含量,并利用ArcGIS技术绘制中国煤中Be、Co、Cu、Mo、Th、Zn的含量地球化学空间分布地图。结果表明:中国煤中有害微量元素含量跨度大,数据分布呈正偏性,不符合正态分布特征;中国煤中Be、Co、Cu、Mo、Th和Zn 的平均含量分别为2.10、5.53、21.36、2.19、7.35和30.02 mg/kg;各元素含量的空间分布极不均匀;煤中有害微量元素含量空间分布格局是多种因素综合作用的结果,如物源区母岩、热液作用、水运移作用等,其中热液作用是煤中有害微量元素异常富集的典型特征。研究成果可为煤中微量元素研究和环境管理提供直观有效的参考。
Abstract:The potential impact of harmful trace elements in coal on the ecological environment and human health is one of the hot topics in the fields of geochemistry and energy environment. Geochemical mapping plays an important role in the deep understanding of geochemical processes and their changing laws. However, previous studies have not provided the national geochemical maps of harmful trace elements in Chinese coals. In this study, the content data of 1 167 Be, 1 315 Co, 1 406 Cu, 1 191 Mo, 1 247 Th, and 1 390 Zn in Chinese coal samples are analyzed, and their average contents are measured. The supporting data are obtained from the trace elements in coal of China (TECC) database. The geochemical maps of Be, Co, Cu, Mo, Th, and Zn in Chinese coals have been published by using ArcGIS mapping. The main conclusions are as follows. The content of harmful trace elements in Chinese coals has a large span and the data distribution is positively biased, which does not conform to the normal distribution. The average content of Be, Co, Cu, Mo, Th and Zn in Chinese coals is 2.10, 5.53, 21.36, 2.19, 7.35 and 30.02 mg/kg, respectively. The spatial distribution of the content of harmful trace elements in Chinese coals is extremely uneven. The spatial distribution pattern of the content of harmful trace elements in coal is dependent on many factors, such as source-rock, hydrothermal action, water migration, etc. Among them, hydrothermal action is a typical feature of abnormal concentration of harmful trace elements in coal. This study can provide intuitive and effective references for geochemical research and environmental management of coal mines.
-
Keywords:
- harmful trace element /
- spatial distribution /
- Be /
- Co /
- Cu /
- Mo /
- Th /
- Zn /
- coal /
- ArcGIS technology
-
-
表 1 样品数据统计指标
Table 1 Statistical indicators of sample data
指标 Be Co Cu Mo Th Zn 备注 样品数量 1167 1315 1406 1191 1247 1390 原始数据 标准差σ 31.17 17.10 37.44 47.67 18.79 58.69 变异系数cv 4.10 1.88 1.31 3.94 2.07 1.34 含量范围和算术平均值/(mg·kg−1) 0~542/7.61 0~250/9.11 0~559/28.66 0~665/12.10 0~581/9.08 0~865/43.70 Q3 (25%)/(mg·kg−1) 1 1.90 8.10 0.90 2.58 12.85 Q2 (50%)/(mg·kg−1) 2 4.30 16.71 1.85 5.69 24.76 Q1 (75%)/(mg·kg−1) 3.63 10.25 36.77 4.91 12.13 50.47 样品数量 1002 1190 1306 984 1162 1255 剔除异
常值后
的数据标准差σ 1.65 5.05 18.05 2.12 6.27 24.49 变异系数cv 0.78 0.91 0.85 0.97 0.85 0.82 含量范围和算术平均值/(mg·kg−1) 0.05~7.51/2.10 0.04~22.73/5.53 0.06~78.5/21.36 0.01~10.6/2.19 0.04~26.1/7.35 0.38~106/30.02 元素平均含量
/(mg·kg−1)Dai Shifeng等[22] 2.11 7.08 17.5 3.08 5.84 41.4 任德贻等[23] 2.13 7.05 18.35 3.11 5.81 42.18 唐修义等[24] 1.90 7.00 13.00 4.00 6.00 38.00 白向飞等[25] 1.75 10.62 17.87 2.70 5.88 — -
[1] XIE Xuejing,WANG Xueqiu,CHENG Hangxin,et al. Digital element earth[J]. Acta Geologica Sinica(English Edition),2011,85(1):1−16. DOI: 10.1111/j.1755-6724.2011.00375.x
[2] WANG Xueqiu,ZHANG Bimin,NIE Lanshi,et al. Mapping chemical earth program:Progress and challenge[J]. Journal of Geochemical Exploration,2020,217:106578.
[3] WANG Xueqiu,ZHANG Qin,ZHOU Guohua. National−scale geochemical mapping projects in China[J]. Geostandards and Geoanalytical Research,2007,31(4):311−320. DOI: 10.1111/j.1751-908X.2007.00128.x
[4] KYSER K,BARR J,IHLENFELD C. Applied geochemistry in mineral exploration and mining[J]. Elements,2015,11(4):241−246. DOI: 10.2113/gselements.11.4.241
[5] 王学求, 徐善法, 聂兰仕, 等. 全球一张地球化学图与全球资源环境评价[C]//中国地质学会. 中国地质学会2015学术年会论文摘要汇编(中册). 北京: 中国地质学会地质学报编辑部, 2015. [6] LADENBERGER A,DEMETRIADES A,REIMANN C,et al. GEMAS:Indium in agricultural and grazing land soil of Europe:Its source and geochemical distribution patterns[J]. Journal of Geochemical Exploration,2015,154:61−80. DOI: 10.1016/j.gexplo.2014.11.020
[7] CICCHELLA D,GIACCIO L,DINELLI E,et al. GEMAS:Spatial distribution of chemical elements in agricultural and grazing land soil of Italy[J]. Journal of Geochemical Exploration,2015,154:129−142. DOI: 10.1016/j.gexplo.2014.11.009
[8] XIE Xuejing,WANG Xueqiu,ZHANG Qin,et al. Multi–scale geochemical mapping in China[J]. Geochemistry:Exploration,Environment,Analysis,2008,8(3/4):333−341.
[9] FEOKTISTOV V M,KHARIN V N,SPECTOR E N. Studying precipitation chemistry by multivariate analysis based on data of rural stations in Russian Barents Region[J]. Water Resources,2014,41(4):421−430. DOI: 10.1134/S0097807814040058
[10] DAVID B S. Geochemical studies of North American soils:Results from the pilot study phase of the North American Soil Geochemical Landscapes Project[J]. Applied Geochemistry,2009,24(8):1355−1356. DOI: 10.1016/j.apgeochem.2009.04.006
[11] JIANG Ping,YANG Hufang,MA Xuejiao. Coal production and consumption analysis,and forecasting of related carbon emission:Evidence from China[J]. Carbon Management,2019,10(2):189−208. DOI: 10.1080/17583004.2019.1577177
[12] CHEN Hong,LI Li,LEI Yalin,et al. Public health effect and its economics loss of PM2.5 pollution from coal consumption in China[J]. Science of the Total Environment,2020,732:138973. DOI: 10.1016/j.scitotenv.2020.138973
[13] CAO Qingyi,YANG Liu,QIAN Yahui,et al. Study on mercury species in coal and pyrolysis–based mercury removal before utilization[J]. ACS Omega,2020,5(32):20215−20223. DOI: 10.1021/acsomega.0c01875
[14] TONG Yali,YUE Tao,GAO Jiajia,et al. Partitioning and emission characteristics of Hg,Cr,Pb and as among air pollution control devices in Chinese coal−fired industrial boilers[J]. Energy and Fuels,2020,34(6):7067−7075. DOI: 10.1021/acs.energyfuels.0c01200
[15] WANG Jinxi,YANG Zhen,QIN Shenjun,et al. Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants[J]. Fuel,2019,258:116062. DOI: 10.1016/j.fuel.2019.116062
[16] CHANG Lin,YANG Jianping,ZHAO Yongchun,et al. Behavior and fate of As,Se,and Cd in an ultra–low emission coal–fired power plant[J]. Journal of Cleaner Production,2019,209:722−730. DOI: 10.1016/j.jclepro.2018.10.270
[17] JIA Jianli,LI Xiaojun,WU Peijing,et al. Human health risk assessment and safety threshold of harmful trace elements in the soil environment of the Wulantuga open–cast coal mine[J]. Minerals,2015,5(4):837−848. DOI: 10.3390/min5040528
[18] YAO Enqin,GUI Herong. Four trace elements contents of water environment of mining subsidence in the Huainan diggings,China[J]. Environmental Monitoring and Assessment,2008,146(1/2/3):203−210.
[19] CAO Qingyi,YANG Liu,REN Wenying,et al. Spatial distribution of harmful trace elements in Chinese coalfields:An application of WebGIS technology[J]. Science of the Total Environment,2020,755:142527.
[20] YANG Liu,BAI Xue,HU Yinjie,et al. Construction of trace element in coal of China database management system:Based on WebGIS[J]. Sains Malaysiana,2017,46(11):2195−2204. DOI: 10.17576/jsm-2017-4611-21
[21] OSGeo中国中心. 中国煤炭资源(1∶3 200万)在线地图[EB/OL]. (2020–02–17) [2021–09–15]. https://www.osgeo.cn/map/m01c8. [22] DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21. DOI: 10.1016/j.coal.2011.02.003
[23] 任德贻, 赵峰华, 代世峰, 等. 煤的微量元素地球化学[M]. 北京: 科学出版社, 2006. [24] 唐修义, 黄文辉. 中国煤中微量元素[M]. 北京: 商务印书馆, 2004. [25] 白向飞,李文华,陈亚飞,等. 中国煤中微量元素分布基本特征[J]. 煤质技术,2007(1):1−4. BAI Xiangfei,LI Wenhua,CHEN Yafei,et al. The general distributions of trace elements in Chinese coals[J]. Coal Quality Technology,2007(1):1−4. DOI: 10.3969/j.issn.1007-7677.2007.01.001 [26] KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148. DOI: 10.1016/j.coal.2009.01.002
[27] 任德贻,赵峰华,张军营,等. 煤中有害微量元素富集的成因类型初探[J]. 地学前缘,1999,6(增刊1):17−22. REN Deyi,ZHAO Fenghua,ZHANG Junying,et al. A preliminary study on genetic type of enrichment for hazardous minor and trace elements in coal[J]. Earth Science Frontiers,1999,6(Sup.1):17−22. [28] REN Deyi,ZHAO Fenghua,WANG Yunquan,et al. Distributions of minor and trace elements in Chinese coals[J]. International Journal of Coal Geology,1999,40:109−118. DOI: 10.1016/S0166-5162(98)00063-9
[29] 刘桂建,彭子成,杨萍玥,等. 煤中微量元素富集的主要因素分析[J]. 煤田地质与勘探,2001,29(4):1−4. LIU Guijian,PENG Zicheng,YANG Pingyue,et al. Mian factors controlling concentration of trace element in coal[J]. Coal Geology & Exploration,2001,29(4):1−4. DOI: 10.3969/j.issn.1001-1986.2001.04.001 [30] CAO Qingyi,YANG Liu,REN Wenying,et al. Environmental geochemical maps of harmful trace elements in Chinese coalfields[J]. Science of the Total Environment,2021,799:149475. DOI: 10.1016/j.scitotenv.2021.149475
-
期刊类型引用(26)
1. 郭晶,张建国,贾慧敏,王琪,何珊,范秀波. 煤层气直井储层堵塞原因分析及解堵措施应用. 中国煤层气. 2024(03): 20-24 . 百度学术
2. 张晨,何萌,肖宇航,刘忠,韩晟,鲁秀芹,王子涵,吴浩宇,张倩倩. 影响煤层气单支压裂水平井产量关键要素及提产对策——以郑庄区块开发实践为例. 煤炭科学技术. 2024(10): 158-168 . 百度学术
3. 韩文龙,王延斌,李勇,倪小明,吴翔,赵石虎. 煤层气低产井区增产改造地质靶区优选方法与应用. 洁净煤技术. 2023(S2): 780-788 . 百度学术
4. 姜维,吴恒,王惠. 新疆准南地区煤层气井低产原因与增产措施研究. 中国煤层气. 2023(03): 9-12 . 百度学术
5. 李勇,胡海涛,王延斌,韩文龙,吴翔,吴鹏,刘度. 煤层气井低产原因及二次改造技术应用分析. 矿业科学学报. 2022(01): 55-70 . 百度学术
6. 张伟,周梓欣. 后峡盆地中部煤层气资源量预测. 内蒙古煤炭经济. 2022(08): 55-57 . 百度学术
7. 贾慧敏,胡秋嘉,张聪,张文胜,刘春春,毛崇昊,王岩. 煤层气双层合采直井产能预测及排采试验——以沁水盆地郑庄西南部为例. 油气藏评价与开发. 2022(04): 657-665 . 百度学术
8. 刘晓,崔彬,吴展. 煤层气井堵塞型递减原因分析及治理——以延川南煤层气田为例. 油气藏评价与开发. 2022(04): 626-632 . 百度学术
9. 胡秋嘉,贾慧敏,张聪,樊彬,毛崇昊,张庆. 高阶煤煤层气井稳产时间预测方法及应用——以沁水盆地南部樊庄-郑庄为例. 煤田地质与勘探. 2022(09): 137-144 . 本站查看
10. 侯安琪. 郑庄区块二次压裂煤层气井低产原因及改进措施. 煤. 2021(03): 16-19 . 百度学术
11. 李浩,梁卫国,李国富,白建平,王建美,武鹏飞. 碎软煤层韧性破坏-渗流耦合本构关系及其间接压裂工程验证. 煤炭学报. 2021(03): 924-936 . 百度学术
12. 信凯,季长江,魏若飞. 晋城矿区郑庄深部煤层L型水平井增产改造技术. 煤. 2021(04): 13-15+19+27 . 百度学术
13. 贾慧敏,胡秋嘉,樊彬,毛崇昊,张庆. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术. 煤田地质与勘探. 2021(02): 34-42 . 本站查看
14. 田跃儒,张双双,郑晓斌. 柳林区块煤层气压裂液评价及伤害机理研究. 煤炭技术. 2021(05): 69-71 . 百度学术
15. 赵景辉,高玉巧,陈贞龙,郭涛,高小康. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响. 中国地质. 2021(03): 785-793 . 百度学术
16. 孙晗森. 我国煤层气压裂技术发展现状与展望. 中国海上油气. 2021(04): 120-128 . 百度学术
17. 彭丽莎,张毅敏,熊威,赵丹,罗凯. 四川筠连地区高阶煤煤层气井解堵技术及应用. 煤田地质与勘探. 2021(05): 132-138 . 本站查看
18. 程泽虎,袁航,匡玉凤. 织金区块煤层气排采制度对产气特征的影响. 中国煤层气. 2021(05): 14-18 . 百度学术
19. 原红超,贾慧敏,王汉雄,安玉敏,闻伟,蒋世民. 煤层气井产出水固体颗粒过滤装置及应用. 中国煤层气. 2020(03): 34-36 . 百度学术
20. 贾慧敏,胡秋嘉,毛建伟,毛崇昊,刘春春,张庆,刘昌平. 高阶煤煤层气井产量递减规律及影响因素. 煤田地质与勘探. 2020(03): 59-64+74 . 本站查看
21. 王镜惠,梅明华,刘娟,王华军. 煤储层酸化增渗影响因素及酸化压裂选井原则. 中国煤炭地质. 2020(05): 12-14+26 . 百度学术
22. 李莹,郑瑞,罗凯,朱延茗,张毅敏. 筠连地区煤层气低产低效井成因及增产改造措施. 煤田地质与勘探. 2020(04): 146-155 . 本站查看
23. 王镜惠,梅明华,刘娟,王华军. 基于突变理论的煤层气井产量预测研究. 当代化工. 2020(08): 1788-1792 . 百度学术
24. 王镜惠,尹宇寒,梅明华,刘娟,王华军. 高煤阶煤储层解吸曲线定量表征及解吸参数研究. 地质与勘探. 2020(05): 1096-1104 . 百度学术
25. 安省蓬. 煤层气低产井原因及下步改进方案研究. 现代盐化工. 2020(05): 53-54 . 百度学术
26. 刘子雄. 基于微地震向量扫描的煤层气井天然裂缝监测. 煤田地质与勘探. 2020(05): 204-210 . 本站查看
其他类型引用(6)