留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶构造对地埋管群换热效率影响数值模拟研究

穆玄 裴鹏 周鑫 屠洪盛

穆玄,裴鹏,周鑫,等. 岩溶构造对地埋管群换热效率影响数值模拟研究[J]. 煤田地质与勘探,2022,50(10):131−139. doi: 10.12363/issn.1001-1986.21.09.0513
引用本文: 穆玄,裴鹏,周鑫,等. 岩溶构造对地埋管群换热效率影响数值模拟研究[J]. 煤田地质与勘探,2022,50(10):131−139. doi: 10.12363/issn.1001-1986.21.09.0513
MU Xuan,PEI Peng,ZHOU Xin,et al. Numerical simulation of the influence of karst structure on heat transfer efficiency of buried pipeline group[J]. Coal Geology & Exploration,2022,50(10):131−139. doi: 10.12363/issn.1001-1986.21.09.0513
Citation: MU Xuan,PEI Peng,ZHOU Xin,et al. Numerical simulation of the influence of karst structure on heat transfer efficiency of buried pipeline group[J]. Coal Geology & Exploration,2022,50(10):131−139. doi: 10.12363/issn.1001-1986.21.09.0513

岩溶构造对地埋管群换热效率影响数值模拟研究

doi: 10.12363/issn.1001-1986.21.09.0513
基金项目: 国家自然科学基金地区项目(52066005);贵州省科技支撑计划项目(黔科合支撑〔2020〕2Y025)
详细信息
    第一作者:

    穆玄,1993年生,男,贵州遵义人,硕士研究生,从事浅层地热方向研究. E-mail:1227626643@qq.com

    通信作者:

    裴鹏,1982年生,男,贵州贵阳人,博士,教授,从事浅层地热能开发方面的研究. E-mail:ppei@gzu.edu.cn

  • 中图分类号: TU83

Numerical simulation of the influence of karst structure on heat transfer efficiency of buried pipeline group

Funds: National Natural Science Foundation of China Regional Project (52066005); Guizhou Province Science and Technology Support Program (Qianke He Support [2020] 2Y025; Guizhou Education Department Young Science and Technology Talent Growth Project (Qian Jiao He KY [2017] 117).
  • 摘要: 地埋管是岩体热泵系统与地层直接交换冷热量的部分。岩溶地区含水构造复杂多样,对地埋管群换热储热有明显影响。对27根垂直地埋管群在无岩溶构造、岩溶裂隙构造、岩溶管道构造以及混合岩溶构造4种地质构造类型中的换热过程进行了模拟,并对比了岩体内温度场、埋管出口水温、热泵机组制冷系数(COP)以及单位井深换热量等参数的变化。结果表明:在制冷工况下,不同模型温度场中,岩体中存在岩溶裂隙构造或岩溶管道构造时,地下水流动对岩体热堆积有明显缓解作用;岩溶导水构造与地埋管的距离也是重要影响因素。模型运行到第1个制冷周期末期时,含岩溶裂隙构造岩体和含岩溶管道构造岩体的进出口水温差比混合岩溶构造岩体的分别升高了0.87、4.00 K;无岩溶构造岩体进出口水温差比混合岩溶构造岩体的下降了1.16 K。无岩溶构造岩体、岩溶裂隙构造岩体、岩溶管道构造岩体和混合岩溶构造岩体的COP分别为7.2、7.4、7.8和7.3;单位井深换热量分别为64.1、90.3、130.7和79.1 W/m。研究结果表明,岩溶导水构造明显增强了地埋管群的换热效率,不同的地质构造类型对地埋管换热效率的影响也不一样。

     

  • 图  4种岩溶构造模型

    Fig. 1  4 karst structural models

    图  4种岩溶构造网格划分

    Fig. 2  Grid division of 4 types of karst structures

    图  热响应进出口水温与模拟进出口水温对比

    Fig. 3  Comparison of thermal response outlet water temperature and simulated outlet water temperature

    图  4种岩溶构造模拟温度场剖视图

    Fig. 4  Cross-sectional view of simulated temperature field of four karst structures

    图  4种岩溶构造模拟温度场俯视图

    Fig. 5  Top view of simulated temperature field of 4 karst structures

    图  4种岩溶构造第2个制冷期(第24个月末)模拟温度场剖视图

    Fig. 6  Cross-section view of simulated temperature field of 4 karst structures during the second shutdown period(end of the 24th month)

    图  地埋管与岩溶管道构造温度场剖视图

    Fig. 7  Cross-sectional view of the temperature field of the buried pipe and the karst pipeline

    表  1  模拟设计参数

    Table  1  Simulation design parameters

    参数数值
    U型管内径/mm26
    U型管外径/mm32
    U型管壁厚/mm3
    U型管管壁导热系数/(W·m−1∙K−1)0.52
    入口水温度/K308.15
    管内流体导热系数/(W·m−1∙K−1)0.6
    岩体初始温度/K291.15
    岩体孔隙率/%1
    岩体渗透率/m21×10−15[18]
    裂隙水流速/(mm·s−1)1[19]
    U型管管内流速/(m·s−1)1.2
    制冷周期/月24
    U型管管道长度/m135
    岩体导热系数/(W·m−1∙K−1)3
    岩石比热容/(J·kg−1·K−1)800
    下载: 导出CSV

    表  2  热响应测试数据

    Table  2  Thermal response test data

    指标数值
    岩体平均原始地温/K290.95
    供水温度/K291.15
    流速/(m·s–1)0.8
    U型管深度/m150
    U型管内/外径/mm26/32
    U型管管间距/mm80
    运行时间/h48
    岩体导热系数/(W·m–1∙K–1)2.85
    回填材料导热系数/(W·m–1∙K–1)2.2
    下载: 导出CSV

    表  3  地埋管群出口水温

    Table  3  Outlet water temperature of buried pipe group

    时间/月温度/K
    PKMKFKNK
    1.5300.41300.10300.97301.69
    2.0300.89300.75301.23302.18
    2.5301.36301.17301.46302.44
    3.0300.54301.45301.62302.71
    3.5299.28301.74301.35302.97
    4.0298.02302.02301.15303.18
    4.5296.76301.78299.03301.68
    13.5300.03302.11301.81303.13
    14.0301.65302.37302.04303.53
    14.5302.02302.62302.18303.78
    15.0302.32302.88302.33304.02
    15.5302.63303.13302.47304.17
    16.0302.93301.91302.30304.31
    16.5302.29300.29300.89303.59
    下载: 导出CSV

    表  4  热泵机组制冷系数COP

    Table  4  Unit performance coefficient COP

    时间/月制冷系数COP
    PKMKFKNK
    1.57.57.57.47.3
    2.07.47.47.47.3
    2.57.47.47.47.2
    3.07.57.47.37.2
    3.57.67.37.47.2
    4.07.87.37.47.2
    4.57.97.37.77.3
    13.57.57.37.37.2
    14.07.37.37.37.1
    14.57.37.27.37.1
    15.07.37.27.37.1
    15.57.27.27.27.0
    16.07.27.37.37.0
    16.57.37.57.47.1
    下载: 导出CSV

    表  5  单位井深换热量

    Table  5  Heat transfer per well depth

    时间/月单位井深换热量/(W·m−1)
    PKMKFKNK
    1.51001049383
    2.094958977
    2.588908674
    3.098868470
    3.5114838867
    4.0131799064
    4.51478211883
    13.5105788265
    14.084757960
    14.579717756
    15.075687553
    15.571657351
    16.067817550
    16.5761019459
    下载: 导出CSV
  • [1] SANDS D. The carnot cycle,reversibility and entropy[J]. Entropy,2021,23(7):810.. doi: 10.3390/e23070810
    [2] ZHOU Weisong,PEI Peng,MAO Ruiyong,et al. Selection and techno–economic analysis of hybrid ground source heat pumps used in karst regions[J]. Science Progress,2020,103(2):1−17.
    [3] BIDARMAGHZ A,CHOUDHARY R,SOGA K,et al. Influence of geology and hydrogeology on heat rejection from residential basements in urban areas[J]. Tunnelling and Underground Space Technology,2019,92:103068.. doi: 10.1016/j.tust.2019.103068
    [4] BAHMANI M H,AKBARI O A,ZARRINGHALAM M,et al. Forced convection in a double tube heat exchanger using nanofluids with constant and variable thermophysical properties[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2019,30(6):3247−3265.
    [5] COVINGTON M D,LUHMANN A J,GABROVEK F,et al. Mechanisms of heat exchange between water and rock in karst conduits[J]. Water Resources Research,2011,47(10):10514.
    [6] BOROVIC S,TERZIC J,URUMOVIC K. Conditions for shallow geothermal energy utilization in Dinaric karst terrains in Croatia[J]. Environmental Earth Sciences,2019,78(7):245.. doi: 10.1007/s12665-019-8251-y
    [7] 曹琦, 张道. 地源热泵空调系统和水文地质构造之间的关系[C]//地温资源与地源热泵技术应用论文集(第一集). 中国资源综合利用协会地温资源综合利用专业委员会. 北京: 中国大地出版社, 2007.
    [8] 张道,曹琦. 浅论陕西省水文地质构造及其适合的地源热泵形式[J]. 制冷与空调,2010,10(2):14−17.. doi: 10.3969/j.issn.1009-8402.2010.02.004

    ZHANG Dao,CAO Qi. Discussion of hydrogeological structures of Shaanxi Province and the applicable forms of GSHP[J]. Refrigeration and Air–Conditioning,2010,10(2):14−17.. doi: 10.3969/j.issn.1009-8402.2010.02.004
    [9] CUI Xianze,FAN Yong,WANG Hongxing,et al. Ground environment characteristics during the operation of GWHP considering the particle deposition effect[J]. Energy and Buildings,2020,206:109593.. doi: 10.1016/j.enbuild.2019.109593
    [10] KARABETOGLU S,OZTURK Z F,KASLILAR A,et al. Effect of layered geological structures on borehole heat transfer[J]. Geothermics,2021,91:102043.. doi: 10.1016/j.geothermics.2021.102043
    [11] LEI Xinbo,ZHENG Xiuhua,DUAN Chenyang,et al. Three–dimensional numerical simulation of geothermal field of buried pipe group coupled with heat and permeable groundwater[J]. Energies,2019,12(19):3698.. doi: 10.3390/en12193698
    [12] WANG Wanli,LUO Jin,WANG Guiling,et al. Study of the sustainability of a ground source heat pump system by considering groundwater flow and intermittent operation strategies[J]. Energy Exploration & Exploitation,2019,37(2):677−690.
    [13] 罗玮潇,王若帆. 贵州岩溶地区地下水系统划分浅析[J]. 有色金属设计,2021,48(2):118−120.. doi: 10.3969/j.issn.1004-2660.2021.02.033

    LUO Weixiao,WANG Ruofan. Division of groundwater systems in karst area of Guizhou Province[J]. Nonferrous Metals Design,2021,48(2):118−120.. doi: 10.3969/j.issn.1004-2660.2021.02.033
    [14] 曲伸,齐子姝,郭磊. 地源热泵地埋管换热量影响因素研究[J]. 吉林建筑大学学报,2020,37(5):49−55.. doi: 10.3969/j.issn.1009-0185.2020.05.009

    QU Shen,QI Zishu,GUO Lei. Study on the influencing factors of heat exchange amount of buried pipe of ground source heat pump[J]. Journal of Jilin Jianzhu University,2020,37(5):49−55.. doi: 10.3969/j.issn.1009-0185.2020.05.009
    [15] 仵彦卿,张倬元. 《岩体水力学导论》[J]. 地质灾害与环境保护,1997(3):38.

    WU Yanqing,ZHANG Zhuoyuan. 《Introduction to rock mass hydraulics》[J]. Journal of Geological Hazards and Environmental Preservation,1997(3):38.
    [16] ZHOU Weisong,PEI Peng,HAO Dingyi,et al. A numerical study on the performance of ground heat exchanger buried in fractured rock bodies[J]. Energies,2020,13(7):1−17.
    [17] 王明章, 陈革平, 王伟, 等. 贵州省岩溶地下水及地质环境: 20120148[P]. 2009-12-28.
    [18] 郭忠华. 基于裂隙几何特征的岩体渗透率预测[J]. 煤炭工程,2021,53(5):156−161.

    GUO Zhonghua. Prediction of rock mass permeability based on geometric features of fractures[J]. Coal Engineering,2021,53(5):156−161.
    [19] 蒋文豪,周宏,李玉坤,等. 基于钻孔内地下水流速和流向的岩溶裂隙介质渗透性研究[J]. 安全与环境工程,2018,25(6):1−7.. doi: 10.13578/j.cnki.issn.1671-1556.2018.06.001

    JIANG Wenhao,ZHOU Hong,LI Yukun,et al. Permeability measurement of karst fractured media based on groundwater velocity and direction within a borehole[J]. Safety and Environmental Engineering,2018,25(6):1−7.. doi: 10.13578/j.cnki.issn.1671-1556.2018.06.001
    [20] HEIN P,KOLDITZ O,GÖRKE U J,et al. A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems[J]. Applied Thermal Engineering,2016,100:421−433.. doi: 10.1016/j.applthermaleng.2016.02.039
    [21] 闵杰. 土壤源热泵地埋管换热器性能影响因素研究[D]. 合肥: 安徽建筑大学, 2021.

    MIN Jie. Research on influencing factors of performance of underground heat exchanger of ground source heat pump[D]. Hefei: Anhui Jianzhu University, 2021.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  22
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-12-29
  • 刊出日期:  2022-10-25
  • 网络出版日期:  2022-10-10

目录

    /

    返回文章
    返回