张宁远,姚素平. 脆性变形序列构造煤纳米孔隙和粗糙度的原子力显微镜研究[J]. 煤田地质与勘探,2022,50(5):32−42. DOI: 10.12363/issn.1001-1986.21.09.0500
引用本文: 张宁远,姚素平. 脆性变形序列构造煤纳米孔隙和粗糙度的原子力显微镜研究[J]. 煤田地质与勘探,2022,50(5):32−42. DOI: 10.12363/issn.1001-1986.21.09.0500
ZHANG Ningyuan,YAO Suping. Nanopore structure and surface roughness in brittle tectonically deformed coals explored by atomic force microscopy[J]. Coal Geology & Exploration,2022,50(5):32−42. DOI: 10.12363/issn.1001-1986.21.09.0500
Citation: ZHANG Ningyuan,YAO Suping. Nanopore structure and surface roughness in brittle tectonically deformed coals explored by atomic force microscopy[J]. Coal Geology & Exploration,2022,50(5):32−42. DOI: 10.12363/issn.1001-1986.21.09.0500

脆性变形序列构造煤纳米孔隙和粗糙度的原子力显微镜研究

Nanopore structure and surface roughness in brittle tectonically deformed coals explored by atomic force microscopy

  • 摘要: 煤孔隙结构是煤层气勘探开发与煤矿安全研究中的关键问题之一。构造煤相比于原生结构煤非均质性强,是煤储层研究中的热点和难点。采用原子力显微镜,结合NanoScope Analysis和Gwyddion分析软件,对脆性变形序列构造煤的孔隙结构和表面粗糙度特征进行研究。结果表明:构造作用整体上促进了脆性变形煤孔隙的发育,但不同脆性变形构造煤受构造作用影响的程度存在明显差异。根据煤受构造作用影响的程度,脆性变形煤孔隙结构演化可划分为强弱2个阶段:弱脆性变形阶段(原生结构煤—碎裂煤—片状煤—碎斑煤)构造作用对煤体的孔隙结构影响较小,平均孔数量缓慢增长,平均孔径缓慢减小,该阶段构造作用主要促进了100~200 nm大孔的发育;强脆性变形阶段(碎斑煤—碎粒煤—薄片煤)构造作用对煤体孔隙结构产生了显著影响,平均孔数量迅速增长,平均孔径迅速减小,这一阶段构造作用主要促进了10~50 nm介孔和50~100 nm大孔的发育。这表明脆性变形构造煤孔隙结构并非简单的线性演变。不同脆性变形煤的算术平均粗糙度和均方根粗糙度参数分别为3.00~6.05 nm和3.94~7.62 nm,其中,弱脆性变形阶段粗糙度整体较高且无明显变化,而强脆性变形阶段粗糙度迅速降低。通过AFM剖面分析,建立了煤表面孔隙形态的数学模型。基于该模型的算术平均粗糙度模拟结果表明,大孔是煤表面粗糙度的主要贡献者,构造作用主要通过影响煤中的孔隙结构,进而影响煤的表面粗糙度。

     

    Abstract: The pore structure of coal is the key to coalbed methane (CBM) exploration and exploitation, and coal mining safety. Compared to primary coals, tectonically deformed coals (TDCs) have stronger heterogeneity and are of great importance in coal reservoir study. Here, the pore structure and surface roughness of brittle TDCs were obtained with atomic force microscopy (AFM) and NanoScope Analysis and Gwyddion software. The results show that tectonic deformation generally promotes the pore development in brittle TDCs, but the extent of tectonic impact varies greatly among different brittle TDCs. As a result, two stages in brittle TDCs were identified: weak brittle deformation stage (primary coal, cataclastic coal, schistose coal and mortar coal) and strong brittle deformation stage (mortar coal, granulitic coal and flaky coal). In the weak brittle deformation stage, tectonic stress has little impact on coals’ pore structure. The mean pore number increases slowly and the mean pore size decreases slowly. In this stage, the tectonic process mainly promotes the development of 100-200 nm macropores. In the strong brittle deformation stage, tectonic stress has a major impact on coals’ pore structure. The mean pore number increases quickly and the mean pore size decreases quickly. The tectonic process in this stage mainly promotes the development of mesopores of 10-50 nm and macropores of 50-100 nm. The two different tectonic stages demonstrate that the whole brittle TDCs do not evolve linearly with tectonic deformation. The arithmetical average height (Ra) and root-mean-square (Rq) roughness are 3.00-6.05 nm and 3.94-7.62 nm respectively. The weak brittle TDCs’ Ra and Rq fluctuate slightly, while the strong brittle TDCs’ Ra and Rq decrease fast. A mathematical model of the morphology of pores in the coal surface was established based on AFM sectional analysis. The Ra simulation of coal samples based on this model shows that pores of larger diameter are mainly responsible for surface roughness. Ra and Rq of coal samples are controlled mainly by nanopore development during tectonic deformation.

     

/

返回文章
返回