留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正断层上盘煤与瓦斯突出特征与地应力场控制机理

曹运兴 张海洋 张震 刘高峰

曹运兴,张海洋,张震,等. 正断层上盘煤与瓦斯突出特征与地应力场控制机理[J]. 煤田地质与勘探,2022,50(4):61−69. doi: 10.12363/issn.1001-1986.21.08.0420
引用本文: 曹运兴,张海洋,张震,等. 正断层上盘煤与瓦斯突出特征与地应力场控制机理[J]. 煤田地质与勘探,2022,50(4):61−69. doi: 10.12363/issn.1001-1986.21.08.0420
CAO Yunxing,ZHANG Haiyang,ZHANG Zhen,et al. Characteristics of coal and gas outburst and controlling mechanism of stress field in the hanging wall of normal faults[J]. Coal Geology & Exploration,2022,50(4):61−69. doi: 10.12363/issn.1001-1986.21.08.0420
Citation: CAO Yunxing,ZHANG Haiyang,ZHANG Zhen,et al. Characteristics of coal and gas outburst and controlling mechanism of stress field in the hanging wall of normal faults[J]. Coal Geology & Exploration,2022,50(4):61−69. doi: 10.12363/issn.1001-1986.21.08.0420

正断层上盘煤与瓦斯突出特征与地应力场控制机理

doi: 10.12363/issn.1001-1986.21.08.0420
基金项目: 国家科技重大专项课题(2016ZX05067006-002);国家自然科学基金项目(41302126)
详细信息
    第一作者:

    曹运兴,1955年生,男,河南鲁山人,博士,教授,博士生导师,从事煤层气/瓦斯地质与工程研究. E-mail:yxcao17@126.com

    通信作者:

    刘高峰,1982年生,男,河南沁阳人,博士,副教授,博士生导师,从事瓦斯地质与煤层气开发研究.E-mail:liugaofeng82@163.com

  • 中图分类号: TD713

Characteristics of coal and gas outburst and controlling mechanism of stress field in the hanging wall of normal faults

  • 摘要: 断层带是煤与瓦斯突出发生的主要地质单元。大量煤与瓦斯突出案例统计显示,对于正断层,发生在上盘的突出次数和强度明显大于下盘,但造成这一现象的地质机理研究不多,特别是正断层上盘的地应力场在采动前后的变化规律及其对突出发生的控制机理尚未完全揭示。基于此,以河南焦作矿区中马村煤矿DF4正断层为地质模型,应用FLAC3D软件,模拟研究煤层埋深分别为660、800、1 000 m,对应3种地应力场(σ1最大主应力、σH最大水平主应力、σh最小水平主应力、σv垂向主应力)状态σ1=σHσ1=σvσv=σH=σh 条件下,采动前和掘进工作面逼近断层面过程中正断层两盘的地应力场变化规律,探索地应力分布对煤与瓦斯突出的作用。结果表明,未采动原始状态下正断层上盘的地应力值高于下盘;无论上盘巷道还是下盘巷道,在掘进工作面逼近断层过程中,断层上盘的地应力值总是高于下盘;特别是,在巷道掘进至断层面附近10 m时,原始地应力与采动应力在断层带发生积聚叠加,地应力值在断层上盘大幅度增高。采动前后地应力在正断层上盘集中升高,可能是导致正断层上盘更容易发生煤与瓦斯突出的决定性因素。此项研究可为预测和防治煤与瓦斯突出灾害提供理论依据。

     

  • 图  正断层模型地层剖面

    Fig. 1  Stratigraphic profile of the normal fault model

    图  正断层三维地质模型

    Fig. 2  Three-dimensional geological model of the normal fault

    图  不同埋深条件下正断层原始地应力场云图

    Fig. 3  Nephogram of the original in-situ stress field of normal faults under different buried depths

    图  不同埋深条件上盘煤巷掘进过程中地应力场云图

    Fig. 4  Nephogram of the stress field for tunneling in the hanging wall under different buried depths

    图  不同埋深条件下盘煤巷掘进过程中地应力场云图

    Fig. 5  Nephogram of the stress field for tunneling in the foot wall under different buried depths

    图  初始状态和掘进过程的最大应力值变化曲线

    Fig. 6  Maximum values of the in-situ stress at different tunneling locations in hanging and foot walls

    表  1  煤岩体物理力学参数

    Table  1  Physical and mechanical parameters of coal and rock

    层位
    岩性
    密度/
    (kg·m−3)
    弹性模
    量/GPa
    泊松比黏聚力/
    MPa
    抗拉强
    度/MPa
    内摩擦
    角/(°)
    中粒砂岩 2 300 23 0.30 2.2 2.4 26
    砂质泥岩 2 500 20 0.25 1.8 2.5 27
    煤层 1 450 10 0.32 1.3 1.1 18
    砂质泥岩 2 500 20 0.25 1.8 2.5 27
    细粒砂岩 2 400 25 0.30 2.8 2.6 32
    断层破碎带 1 800 1 0.35 0.2 0.01 10
    下载: 导出CSV

    表  2  模型的应力初始条件参数

    Table  2  In-situ stress initial condition parameters of the model

    埋深/m应力场
    状态
    地应力/MPa
    σHσhσv
    660 σ1=σH −20 −12 −16.5
    800 σ1=σv −16 −16 −20
    1 000 σv=σH=σh −25 −25 −25
      注:上覆岩层自重应力近似代替垂向主应力σv,岩石平均密度取2.5×103 kg/m3
    下载: 导出CSV

    表  3  断层上下盘的不同掘进位置最大地应力值

    Table  3  Maximum stress values at different tunneling locations in the hanging wall and the foot wall

    埋深和应力距断层面距离/m最大应力值/MPa
    煤巷在上盘煤巷在下盘
    上盘下盘上盘下盘
    660 m,σ1=σH 原始 22 14.0 22.0 14.0
    30 22 15.0 22.0 15.0
    20 24 17.5 22.3 15.0
    15 26 20.0 24.0 17.5
    10 30 25.0 25.0 20.0
    800 m,σ1=σv 原始 27 20.0 27.0 20.0
    30 27 20.0 27.0 22.5
    20 30 22.5 28.0 25.0
    15 32 25.0 30.5 30.0
    10 36 30.0 31.6 30.0
    1 000 m,σv=σH=σh 原始 33 24.0 33.0 24.0
    30 34 25.0 35.0 30.0
    20 40 30.0 37.0 30.0
    15 44 35.0 40.0 32.0
    10 52 40.0 40.0 32.0
    下载: 导出CSV
  • [1] 国家煤炭工业网. 世界首例煤与瓦斯突出物理模拟试验成功[EB/OL]. (2019-05-17). http://www.coalchina.org.cn/detail/19/05/17/00000001/content.html.
    [2] 张超林,王恩元,王奕博,等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探,2021,49(4):134−141. ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al. Spatial–temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration,2021,49(4):134−141.. doi: 10.3969/j.issn.1001-1986.2021.04.016
    [3] 姜波,李明,程国玺,等. 矿井构造预测及其在瓦斯突出评价中的意义[J]. 煤炭学报,2019,44(8):2306−2317. JIANG Bo,LI Ming,CHENG Guoxi,et al. Mine geological structure prediction and its significance for gas outburst hazard evaluation[J]. Journal of China Coal Society,2019,44(8):2306−2317.
    [4] 焦作矿业学院瓦斯地质研究室. 瓦斯地质概论[M]. 北京: 煤炭工业出版社, 1990.
    [5] 彭立世, 袁崇孚. 瓦斯地质与瓦斯突出预测[M]. 北京: 中国科学技术出版社, 2009.
    [6] 郭德勇,韩德馨. 地质构造控制煤和瓦斯突出作用类型研究[J]. 煤炭学报,1998,23(4):337−341. GUO Deyong,HAN Dexin. Research on the types of geological tectonic controlling coal–gas outbursts[J]. Journal of China Coal Society,1998,23(4):337−341.
    [7] 徐刚,李树刚,马瑞峰. 顺煤层剪切带煤与瓦斯突出机理分析[J]. 煤田地质与勘探,2014,42(4):16−20. XU Gang,LI Shugang,MA Ruifeng. Analysis on coal and gas outburst mechanism of beding shear zone[J]. Coal Geology & Exploration,2014,42(4):16−20.. doi: 10.3969/j.issn.1001-1986.2014.04.004
    [8] 刘咸卫,曹运兴,刘瑞珣,等. 正断层两盘的瓦斯突出分布特征及其地质成因浅析[J]. 煤炭学报,2000,25(6):571−575. LIU Xianwei,CAO Yunxing,LIU Ruixun,et al. Analysis on distribution features of gas outburst from two walls of normal fault and geological origin[J]. Journal of China Coal Society,2000,25(6):571−575.. doi: 10.3321/j.issn:0253-9993.2000.06.003
    [9] 张国成,熊明富,郭卫星,等. 淮南矿区井田小构造对煤与瓦斯突出的控制作用[J]. 焦作工学院学报(自然科学版),2003,22(5):329−333. ZHANG Guocheng,XIONG Mingfu,GUO Weixing,et al. Small–scale structures controlling coal and gas outburst in Huainan coal field[J]. Journal of Jiaozuo Institute of Technology(Natural Science),2003,22(5):329−333.
    [10] 焦先军. 正断层上盘突出危险性评价[J]. 安徽科技,2005(1/2):84−85. JIAO Xianjun. Risk assessment of outburst in hanging wall of normal fault[J]. Anhui Science & Technology,2005(1/2):84−85.
    [11] 田雨桐,张平松,吴荣新,等. 煤层采动条件下断层活化研究的现状分析及展望[J]. 煤田地质与勘探,2021,49(4):60−70. TIAN Yutong,ZHANG Pingsong,WU Rongxin,et al. Research status and prospect of fault activation under coal mining conditions[J]. Coal Geology & Exploration,2021,49(4):60−70.. doi: 10.3969/j.issn.1001-1986.2021.04.008
    [12] 曹运兴,彭立世,侯泉林. 顺煤层断层的基本特征及其地质意义[J]. 地质评论,1993,39(6):522−528. CAO Yunxing,PENG Lishi,HOU Quanlin. Basic characteristics of coal−seam faults and their geological significance[J]. Geological Review,1993,39(6):522−528.
    [13] 曹运兴,彭立世. 顺煤断层的基本类型及其对瓦斯突出带的控制作用[J]. 煤炭学报,1995,20(4):413−417. CAO Yunxing,PENG Lishi. Basic types of coal seam faults and their effect on controlling gas outburst zone[J]. Journal of China Coal Society,1995,20(4):413−417.. doi: 10.3321/j.issn:0253-9993.1995.04.023
    [14] 冉小勇,魏风清,史广山. 构造的挤压剪切作用对郑州矿区煤与瓦斯突出的控制[J]. 煤田地质与勘探,2016,44(6):51−54. RAN Xiaoyong,WEI Fengqing,SHI Guangshan. Coal and gas outburst controlled by tectonic extrusion and shear in Zhengzhou mining area[J]. Coal Geology & Exploration,2016,44(6):51−54.. doi: 10.3969/j.issn.1001-1986.2016.06.009
    [15] CAO Yunxing,HE Dingdong,GLICK D C. Coal and gas outbursts in footwalls of reverse faults[J]. International Journal of Coal Geology,2001,48(1/2):47−63.
    [16] CAO Yunxing,DAVIS A,LIU Ruixun,et al. The influence of tectonic deformation on some geochemical properties of coals–a possible indicator of outburst potential[J]. International Journal of Coal Geology,2003,53(2):69−79.. doi: 10.1016/S0166-5162(02)00077-0
    [17] 张超林,许江,彭守建,等. 煤与瓦斯突出物理模拟实验研究进展及展望[J]. 煤田地质与勘探,2018,46(4):28−34. ZHANG Chaolin,XU Jiang,PENG Shoujian,et al. Advances and prospects in physical simulation of coal and gas outburst[J]. Coal Geology & Exploration,2018,46(4):28−34.. doi: 10.3969/j.issn.1001-1986.2018.04.005
    [18] 王恩营,邵强,韩松林. 正断层形成的力学分析及其对构造煤的控制[J]. 煤炭科学技术,2009,37(9):104−106. WANG Enying,SHAO Qiang,HAN Songlin. Mechanics analysis of normal fault formation and control of structure coal[J]. Coal Science and Technology,2009,37(9):104−106.
    [19] 程远平,雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报,2021,46(1):180−198. CHENG Yuanping,LEI Yang. Causality between tectonic coal and coal and gas outbursts[J]. Journal of China Coal Society,2021,46(1):180−198.
    [20] 贾晓亮,崔洪庆,张子敏. 断层端部地应力影响因素数值分析[J]. 煤田地质与勘探,2010,38(4):47−51. JIA Xiaoliang,CUI Hongqing,ZHANG Zimin. Numerical simulation of geostatic stress influencing factor at the end of fault[J]. Coal Geology & Exploration,2010,38(4):47−51.. doi: 10.3969/j.issn.1001-1986.2010.04.011
    [21] 吉小峰,倪小明,李哲远. 不同倾角正断层附近应力分布规律数值模拟研究[J]. 煤炭技术,2014,33(10):288−290. JI Xiaofeng,NI Xiaoming,LI Zheyuan. Numerical simulation study on law of stress distribution near normal fault in different dip[J]. Coal Technology,2014,33(10):288−290.
    [22] 赵钰挺,段东,杨瑶,等. 断层端部地应力分布规律影响因素的数值模拟[J]. 煤矿安全,2015,46(10):210−213. ZHAO Yuting,DUAN Dong,YANG Yao,et al. Numerical simulation on influence factors of ground stress at the end of fault[J]. Safety in Coal Mines,2015,46(10):210−213.
    [23] 蒋金泉,武泉林,曲华. 硬厚覆岩正断层附近采动应力演化特征[J]. 采矿与安全工程学报,2014,31(6):881−887. JIANG Jinquan,WU Quanlin,QU Hua. Evolutionary characteristics of mining stress near the hard–thick overburden normal faults[J]. Journal of Mining & Safety Engineering,2014,31(6):881−887.
    [24] 郑文海. 地应力分布规律的FLAC3D模拟研究[D]. 青岛: 山东科技大学, 2011.

    ZHENG Wenhai. FLAC3D simulation study of geostress distribution rule[D]. Qingdao: Shandong University of Science and Technology, 2011.
    [25] NAKATEN B,KEMPKA T. Workflow for fast and efficient integration of Petrel–based fault models into coupled hydro–mechanical TOUGH2–MP–FLAC3D simulations of CO storage2[J]. Energy Procedia,2014,63:3576−3581.. doi: 10.1016/j.egypro.2014.11.387
    [26] 王永国,王明,许蓬. 巴彦高勒煤矿3–1煤层顶板垮落裂缝带发育特征[J]. 煤田地质与勘探,2019,47(增刊1):37−42. WANG Yongguo,WANG Ming,XU Peng. Characteristics of collapsed fractured zone development of No. 3–1 seam roof in Bayangaoler coal mine[J]. Coal Geology & Exploration,2019,47(Sup.1):37−42.
    [27] 刘世奇,胡小龙,张罗迅. 基于AutoCAD的FLAC3D断层模拟快速建模方法[J]. 煤矿安全,2018,49(5):135−138. LIU Shiqi,HU Xiaolong,ZHANG Luoxun. Method of rapid modeling in FLAC3D fault simulation based on AutoCAD[J]. Safety in Coal Mines,2018,49(5):135−138.
    [28] 贾江锋,束佳明,马宁,等. 基于采动应力分布的深部正断层工作面设计数值模拟[J]. 煤矿安全,2018,49(9):284−288. JIA Jiangfeng,SHU Jiaming,MA Ning,et al. Numerical simulation of deep normal fault working face design based on mining stress distribution[J]. Safety in Coal Mines,2018,49(9):284−288.
    [29] 甘智慧,尚慧,杜荣军,等. 基于FLAC3D和DEM数据的缓倾斜煤层开采沉陷分析[J]. 煤田地质与勘探,2021,49(3):158−166. GAN Zhihui,SHANG Hui,DU Rongjun,et al. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. Coal Geology & Exploration,2021,49(3):158−166.
    [30] 孟召平,蓝强,刘翠丽,等. 鄂尔多斯盆地东南缘地应力、储层压力及其耦合关系[J]. 煤炭学报,2013,38(1):122−128. MENG Zhaoping,LAN Qiang,LIU Cuili,et al. In–situ stress and coal reservoir pressure in Southeast margin of Ordos Basin and their coupling relations[J]. Journal of China Coal Society,2013,38(1):122−128.
    [31] 孟召平,尹可,章朋. 基于断层摩擦强度的地应力计算模型与应用[J]. 煤炭科学技术,2018,46(6):24−28. MENG Zhaoping,YIN Ke,ZHANG Peng. Calculation model of in–situ stress based on fault frictional strength and its application[J]. Coal Science and Technology,2018,46(6):24−28.
    [32] 康红普,伊丙鼎,高富强,等. 中国煤矿井下地应力数据库及地应力分布规律[J]. 煤炭学报,2019,44(1):23−33. KANG Hongpu,YI Bingding,GAO Fuqiang,et al. Database and characteristics of underground in–situ stress distribution in Chinese coal mines[J]. Journal of China Coal Society,2019,44(1):23−33.
    [33] 康红普,司林坡,张晓. 浅部煤矿井下地应力分布特征研究及应用[J]. 煤炭学报,2016,41(6):1332−1340. KANG Hongpu,SI Linpo,ZHANG Xiao. Characteristics of underground in–situ stress distribution in shallow coal mines and its applications[J]. Journal of China Coal Society,2016,41(6):1332−1340.
    [34] 何旭龙,孟召平,李涛. 太原西山区块煤储层地应力分布特征及评价[J]. 煤田地质与勘探,2017,45(3):67−71. HE Xulong,MENG Zhaoping,LI Tao. Distribution and evaluation of geostress in coal reservoirs in Xishan block, Taiyuan[J]. Coal Geology & Exploration,2017,45(3):67−71.. doi: 10.3969/j.issn.1001-1986.2017.03.012
    [35] 张子戌,袁崇孚. 突出危险区域的构造应力集中[J]. 焦作工学院学报,1997,16(2):17−20. ZHANG Zixu,YUAN Chongfu. Tectonic stress concentration of outburst dangerous area[J]. Journal of Jiaozuo Institute of Technology,1997,16(2):17−20.
    [36] 马淑芝,贾洪彪,易顺民,等. 罗湖断裂带地应力场三维有限元模拟分析[J]. 岩石力学与工程学报,2006,25(增刊2):3898−3903. MA Shuzhi,JIA Hongbiao,YI Shunmin,et al. Analysis of geostress field simulation in Luohu fault zone with 3D finite element method[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup.2):3898−3903.
    [37] 张浪,刘永茜. 断层应力状态对煤与瓦斯突出的控制[J]. 岩土工程学报,2016,38(4):712−717. ZHANG Lang,LIU Yongqian. Stress control for coal and gas outburst on a fault plane[J]. Chinese Journal of Geotechnical Engineering,2016,38(4):712−717.. doi: 10.11779/CJGE201604016
    [38] 李术才,李清川,王汉鹏,等. 大型真三维煤与瓦斯突出定量物理模拟试验系统研发[J]. 煤炭学报,2018,43(增刊1):121−129. LI Shucai,LI Qingchuan,WANG Hanpeng,et al. A large–scale three–dimensional coal and gas outburst quantitative physical modeling system[J]. Journal of China Coal Society,2018,43(Sup.1):121−129.
    [39] 张宏伟,陈学华,王魁军. 地层结构的应力分区与煤瓦斯突出预测分析[J]. 岩石力学与工程学报,2000,19(4):464−467. ZHANG Hongwei,CHEN Xuehua,WANG Kuijun. Division of tectonic stress zones and prediction of coal and gas bursts[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(4):464−467.. doi: 10.3321/j.issn:1000-6915.2000.04.015
    [40] 胡千庭,周世宁,周心权. 煤与瓦斯突出过程的力学作用机理[J]. 煤炭学报,2008,33(12):1368−1372. HU Qianting,ZHOU Shining,ZHOU Xinquan. Mechanical mechanism of coal and gas outburst progress[J]. Journal of China Coal Society,2008,33(12):1368−1372.. doi: 10.3321/j.issn:0253-9993.2008.12.008
    [41] 程远平,张晓磊,王亮. 地应力对瓦斯压力及突出灾害的控制作用研究[J]. 采矿与安全工程学报,2013,30(3):408−414. CHENG Yuanping,ZHANG Xiaolei,WANG Liang. Controlling effect of ground stress on gas pressure and outburst disaster[J]. Journal of Mining & Safety Engineering,2013,30(3):408−414.
    [42] 朱立凯,杨天鸿,徐涛,等. 煤与瓦斯突出过程中地应力、瓦斯压力作用机理探讨[J]. 采矿与安全工程学报,2018,35(5):1038−1044. ZHU Likai,YANG Tianhong,XU Tao,et al. Explore the mechanism of ground stress and gas pressure in coal−gas outburst[J]. Journal of Mining & Safety Engineering,2018,35(5):1038−1044.
    [43] 徐平,张子戌,戴永浩. 地应力现场测试及其对煤与瓦斯突出的影响[J]. 矿业研究与开发,2007,28(2):71−74. XU Ping,ZHANG Zixu,DAI Yonghao. In–situ stress measurement and the effects of in–situ stress on coal and gas outburst[J]. Mining Research and Development,2007,28(2):71−74.
    [44] 许江,刘东,尹光志,等. 非均布荷载条件下煤与瓦斯突出模拟实验[J]. 煤炭学报,2012,37(5):836−842. XU Jiang,LIU Dong,YIN Guangzhi,et al. Simulation experiment of coal and gas outburst under non–uniform load[J]. Journal of China Coal Society,2012,37(5):836−842.
    [45] 高魁,刘泽功,刘健. 地应力在石门揭构造软煤诱发煤与瓦斯突出中的作用[J]. 岩石力学与工程学报,2015,34(2):305−312. GAO Kui,LIU Zegong,LIU Jian. Effect of geostress on coal and gas outburst in the uncovering tectonic soft coal by cross–cut[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(2):305−312.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  39
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 修回日期:  2021-10-30
  • 发布日期:  2022-04-25
  • 网络出版日期:  2022-03-31

目录

    /

    返回文章
    返回