留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神府−东胜矿区高强度开采顶板涌水特征及防治技术

许峰 靳德武 杨茂林 王世东 黄欢 党亚堃

许峰,靳德武,杨茂林,等.神府−东胜矿区高强度开采顶板涌水特征及防治技术[J].煤田地质与勘探,2022,50(2):72−80. doi: 10.12363/issn.1001-1986.21.07.0379
引用本文: 许峰,靳德武,杨茂林,等.神府−东胜矿区高强度开采顶板涌水特征及防治技术[J].煤田地质与勘探,2022,50(2):72−80. doi: 10.12363/issn.1001-1986.21.07.0379
XU Feng,JIN Dewu,YANG Maolin,et al.Characteristics of roof water inflow and control technology for high intensity mining in Dongsheng Mining Area,Shenfu Coalfield[J].Coal Geology & Exploration,2022,50(2):72−80. doi: 10.12363/issn.1001-1986.21.07.0379
Citation: XU Feng,JIN Dewu,YANG Maolin,et al.Characteristics of roof water inflow and control technology for high intensity mining in Dongsheng Mining Area,Shenfu Coalfield[J].Coal Geology & Exploration,2022,50(2):72−80. doi: 10.12363/issn.1001-1986.21.07.0379

神府−东胜矿区高强度开采顶板涌水特征及防治技术

doi: 10.12363/issn.1001-1986.21.07.0379
基金项目: 国家重点研发计划课题(2017YFC0804106);陕西省自然科学基础研究计划项目(2020JM-715)
详细信息
    第一作者:

    许峰,1986年生,男,江苏句容人,硕士,副研究员,从事矿井水文地质安全保障技术方面的研究. E-mail:348279155@qq.com

  • 中图分类号: TD745

Characteristics of roof water inflow and control technology for high intensity mining in Dongsheng Mining Area,Shenfu Coalfield

  • 摘要: 针对我国西部矿区煤炭开采顶板水害威胁问题,以神府−东胜矿区为研究对象,统计了50个工作面的涌水量数据,总结了不同煤−水组合下5种典型的工作面顶板涌水特征:动态补给主导的持续增长型;“动−静”储量共同作用的先增后稳型;微涌水持续稳定性;水文地质条件差异化局部凸显型以及静储量主导先增后减型。针对每种涌水规律,分析了其成因机制,并提出相应的水害防治思路及措施:当工作面受侧向补给较强时,根据实际水文地质条件可采用帷幕截流措施为主、疏水降压措施为辅的防治手段;当工作面受顶板含水层静储量补给为主时,可提前疏水降压,削峰平谷;当工作面受顶板含水层局部富水区域或采空区涌水补给时,可有针对性地采取疏放、注浆治理等综合措施,消除局部水患等。研究成果对于受顶板水害威胁的西部矿区水害防治工作具有借鉴意义。

     

  • 图  神府−东胜矿区煤–水空间关系

    Fig. 1  Schematic diagram of coal-water spatial relationship in Dongsheng Mining Area of Shenfu Coalfield

    图  锦界煤矿3个典型工作面涌水量随回采距离变化趋势

    Fig. 2  Variation trend of water inflow with mining distance in three typical working faces of Jinjie Coal Mine

    图  锦界矿典型工作面煤–水空间关系(回采方向)

    Fig. 3  Coal-water spatial relationship of typical working faces(advancing direction) in Jinjie Coal Mine

    图  锦界煤矿2个典型工作面涌水量随回采距离变化趋势

    Fig. 4  Variation trend of water inflow with mining distance in two typical working faces of Jinjie Coal Mine

    图  3个典型工作面涌水量随回采距离变化趋势

    Fig. 5  Variation trend of water inflow with mining distance in three typical working faces of coal mines

    图  哈拉沟煤矿22410工作面顶板基岩裂隙含水层强富水性区域分布

    Fig. 6  Distribution of water rich zone of bedrock fissure aquifer in working face 22410 of Halagou Coal Mine

    图  哈拉沟煤矿22410工作面涌水量随回采距离变化趋势

    Fig. 7  Variation trend of water inflow with mining distance in working face 22410 of Halagou Coal Mine

    图  哈拉沟煤矿22519工作面涌水量随回采距离变化趋势

    Fig. 8  Variation trend of water inflow of working face 22519 with mining distance in Halagou Coal Mine

    图  哈拉沟煤矿22519工作面与三元沟位置

    Fig. 9  Location of working face 22519 in Halagou Coal Mine and Sanyuangou

    图  10  补连塔煤矿12413工作面涌水量随回采距离变化趋势

    Fig. 10  Variation trend of water inflow of working face 12413 with mining distance in Bulianta Coal Mine

    图  11  补连塔煤矿12413工作面与补连沟位置关系

    Fig. 11  Position relationship between working face 12413 and Buliangou in Bulianta Coal Mine

    图  12  乌兰木伦煤矿等3个典型工作面涌水量随回采距离变化趋势

    Fig. 12  Variation trend of water inflow with mining distance in three typical working faces of Ulan Mulun Coal Mine and Bu’ertai Coal Mine

    图  13  乌兰木伦和布尔台煤矿煤–水空间分布特征

    Fig. 13  Characteristics of coal-water spatial distribution in Ulan Mulun Coal Mine and Bu’ertai Coal Mine

    表  1  区域地层

    Table  1  Regional strata

    地层单位厚度(最小~最大值)/m
    岩性描述
    统(群)
    第四系 全新统 Q4eol,Q4al 0~60 以现代风积沙为主,主要为中细沙及亚沙土,在河谷滩地和一些地势低洼地带为冲击层、冲洪积层,与下伏地层呈角度不整合
    上更新统 马兰组(Q3m) 0~30 灰黄色亚沙土(马兰黄土),大孔隙,含钙质结核,具柱状节理,与下伏地层呈角度不整合
    萨拉乌苏组(Q3s) 0~160 灰黄–褐黑色粉细沙、亚沙土、沙质黏土,底部有砾石,与下伏地层呈角度不整合
    中更新统 离石组(Q2l) 0~165 离石黄土,浅棕黄色–黄褐色亚黏土、亚沙土,夹粉土质沙层、古土壤层、钙质结核层,底部有砾石层
    下更新统 三门组(Q1s) 0~50 褐红色–浅肉红色亚黏土、砾石层,夹钙质结核层,与下伏地层呈角度不整合
    新近系 上新统 保德组(N2b) 0~175 棕红色–紫红色黏土或砂质黏土,夹钙质结核层,含脊椎动物化石,与下伏地层呈角度不整合
    白垩系 志丹群 东胜组(K1zh2) 0~230 上部为浅红色、棕红色含砾砂岩与砾岩互层,下部为黄、黄绿色砾岩
    伊金霍洛组(K1zh1) 0~80 上部为深红色泥岩与褐红色细粒砂岩,中部具有大型交错层理的中、粗砂岩,底部为灰绿、褐红色砾岩,与下伏地层呈角度不整合
    侏罗系 中统 安定组(J2a) 0~114 紫红、灰紫色砂质泥岩,粉砂岩,中、细粒砂岩不等厚互层,底部为灰
    黄色、浅紫红色、中粗粒含砾长石砂岩,巨厚层、透镜状、微含钙质
    直罗组(J2z) 0~278 灰绿色,局部紫杂色泥岩、砂质泥岩、粉砂岩与灰黄绿色细粒砂岩互层,泥岩多具水平层理,含铁质结核。局部为巨厚层状,灰白色灰黄色中–粗粒含砾长石砂岩,与下伏地层呈平行不整合
    中下统 延安组(J1-2y) 20~311 灰白色细、中粒长石砂岩,深灰色泥岩,砂质泥岩及煤层组成的含煤岩系,泥岩中多含菱铁矿结核,泥灰岩透镜体,蒙脱质黏土岩。含丰富瓣鳃化石,煤系自下而上分Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ段,各含一个煤组,自上而下编号1—5组
    下统 富县组
    (J1f)
    0~142 上部为浅黄、灰绿、紫红色泥岩,夹砂岩;下部以砂岩为主,局部为砂岩与泥岩互层;底部为浅黄色砾岩,与下伏地层呈平行不整合
    三叠系 上统 延长组(T3y) 35~312 黄、灰绿、紫、灰黑色块状中粗粒砂岩,夹灰黑、灰绿色泥岩和煤线
    下载: 导出CSV

    表  2  神府−东胜矿区含(隔)水层特征

    Table  2  Characteristics of aquifers(aquifuges) in Dongsheng Mining Area of Shenfu Coalfield

    地层含(隔)水层类型岩性特征厚度及富水性特征分布范围
    第四系 冲积层(Q4al) 松散岩类孔
    隙含水层组
    以细沙、粉砂、粉土和粉质土为主 松散含水层组的单位涌水量为0.027~
    2.110 L/(s·m),渗透系数(K)为0.02~
    30.00 m/d,富水性弱–强
    河谷区
    萨拉乌苏组(Q3s) 以固定、半固定沙丘形式覆盖于地表 广泛分布
    离石组(Q2l) 黄土、红土隔水层 以黏土和亚黏土为主,呈浅棕色、棕色,隔水性特征明显 富水性极弱 分布不连续
    新近系 保德组(N2b) 以黏土和亚黏土为主,呈浅红色、红色,隔水性特征明显 区域大部分布
    白垩系 志丹群(K1zh) 孔隙−裂隙含水层 中粗粒砂岩,局部为含砾粗砂岩及砾岩,结构疏松 该含水层一般厚50~74 m,单位涌水量(q)为0.1~3.0 L/(s·m),渗透系数(K)为0.035~0.980 m/d,富水性中等–强 矿区西北部
    侏罗系 安定组(J2a) 隔水层 紫红色、紫杂色泥岩,粉砂岩夹砖红色砂岩 矿区西部
    直罗组(J2z) 孔隙–裂隙含水层组 以中–粗砂岩为主,夹薄层泥岩和泥砂岩 该含水层厚度45~138 m,单位涌水量(q)
    为0.1~1.0 L/(s·m),含水层渗透系数(K)
    为0.037~0.110 m/d,富水性中等–强
    全区分布
    延安组(J1-2y) 含煤地层,以砂岩和泥岩为主 该含水层厚度90~250 m,单位涌水量(q)为0.000 1~0.081 L/(s·m),渗透系数(K)为
    0.000 14~0.19 m/d,富水性弱
    全区分布
    下载: 导出CSV

    表  3  不同工作面涌水类型及防治对策

    Table  3  Types of water inrush in different working faces and countermeasures

    涌水类型涌水类型曲线典型工作面防治对策
    持续增长型 锦界煤矿31401、31409和31201工作面等 侧向动态补给强烈,因此,防治措施以侧向的帷幕截流措施为主,配合开展疏水降压工程
    先增后稳型 锦界煤矿31407、31114工作面等 工作面涌水受到侧向和上部含水层静储量共同补给,防治措施以超前疏水降压为主,提前释放工作面上部含水层静储量,避免回采期间对工作面排水系统造成冲击
    持续稳定型 上湾煤矿12401工作面、柳塔煤矿12122工作面、榆家梁煤矿52210工作面等 侧向补给微弱,静储量有限,探查工作面范围内的富水异常区,在做好工作面临时排水的基础上,对可能存在的富水异常区进行局部疏放,无需开展大规模疏水降压措施
    局部凸显型 哈拉沟煤矿22410、22519工作面和补连塔煤矿12413工作面等 局部特殊地段(采空区、沟流、强富水区等)引起的涌水量增加。针对该类工作面,一定要对局部特殊地段提前探查,采取超前疏放(采空区积水、富水区水)、地表防渗(地表沟流等)以及局部地段的注浆治理等措施
    先增后减型 乌兰木伦煤矿31408、12403和布尔台煤矿22102工作面等 针对该类型工作面,采取少量疏放工程即可消除水害隐患,在做好工作面临时排水前提下,顶板涌水对工作面回采影响较小
    下载: 导出CSV
  • [1] 徐智敏,高尚,崔思源,等. 哈密煤田生态脆弱区保水采煤的水文地质基础与实践[J]. 煤炭学报,2017,42(1):80−87.

    XU Zhimin,GAO Shang,CUI Siyuan,et al. Hydro−geological basic and practice for water−preserved mining in ecologically vulnerable area:A case study in Hami Coalfield[J]. Journal of China Coal Society,2017,42(1):80−87.
    [2] 王冠,崔宏磊,黄美涛. 黄陇侏罗纪煤田特厚煤层综放开采顶板水害防治技术[J]. 煤矿安全,2018,49(5):95−98.

    WANG Guan,CUI Honglei,HUANG Meitao. Prevention and control of roof water damage in fully mechanized caving mining of super thick coal seam in Huanglong Jurassic coal field[J]. Safety in Coal Mines,2018,49(5):95−98.
    [3] 梁向阳,杨建,曹志国. 呼吉尔特矿区矿井涌水特征及其沉积控制[J]. 煤田地质与勘探,2020,48(1):138−144.. doi: 10.3969/j.issn.1001-1986.2020.01.018

    LIANG Xiangyang,YANG Jian,CAO Zhiguo. Characteristics and sedimental control of mine water outflow in Hujirt mining area[J]. Coal Geology & Exploration,2020,48(1):138−144.. doi: 10.3969/j.issn.1001-1986.2020.01.018
    [4] 赵春虎,董书宁,王皓,等. 采煤工作面顶板含水层井下疏水钻孔涌水规律数值分析[J]. 煤炭学报,2020,45(增刊1):405−414.

    ZHAO Chunhu,DONG Shuning,WANG Hao,et al. Analysis of water inrush from boreholes for drainage of confined aquifer by upward boreholes in underground coal mining face[J]. Journal of China Coal Society,2020,45(Sup.1):405−414.
    [5] 任邓君,孙亚岳,李建阳. 高家堡煤矿煤层顶板水水化学特征及其水害防治技术[J]. 煤田地质与勘探,2019,47(增刊1):26−31.

    REN Dengjun,SUN Yayue,LI Jianyang. Hydrochemical characteristics and control of water hazard from coal seam roof in Gaojiabao coal mine[J]. Coal Geology & Exploration,2019,47(Sup.1):26−31.
    [6] 吕广罗,田刚军,张勇,等. 巨厚砂砾岩含水层下特厚煤层保水开采分区及实践[J]. 煤炭学报,2017,42(1):189−196.

    LYU Guangluo,TIAN Gangjun,ZHANG Yong,et al. Division and practice of water–preserved mining in ultra–thick coal seam under ultra thick sandy conglomerate aquifer[J]. Journal of China Coal Society,2017,42(1):189−196.
    [7] 薛建坤,王皓,赵春虎,等. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J]. 采矿与安全工程学报,2020,37(6):1222−1230.

    XUE Jiankun,WANG Hao,ZHAO Chunhu,et al. Prediction of the height of water–conducting fracture zone and water–filling model of roof aquifer in Jurassic coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering,2020,37(6):1222−1230.
    [8] 李东,刘生优,张光德,等. 鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J]. 煤炭学报,2017,42(12):3249−3254.

    LI Dong,LIU Shengyou,ZHANG Guangde,et al. Typical roof water disasters and its prevention & control technology in the north of Ordos Basin[J]. Journal of China Coal Society,2017,42(12):3249−3254.
    [9] 蔺成森. 顶板巨厚砂岩水防治方法研究与应用[J]. 煤田地质与勘探,2019,47(增刊1):81−85.

    LIN Chengsen. Research and application of water control of thick sandstone in coal roof[J]. Coal Geology & Exploration,2019,47(Sup.1):81−85.
    [10] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.

    DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.
    [11] 赵春虎,靳德武,李智学,等. 陕北榆神矿区煤层开采顶板涌水规律分析[J]. 煤炭学报,2021,46(2):523−533.

    ZHAO Chunhu,JIN Dewu,LI Zhixue,et al. Analysis of overlying aquifer water inrush above mining seam in Yushen mining area[J]. Journal of China Coal Society,2021,46(2):523−533.
    [12] 赵春虎,王皓,靳德武. 煤层开采覆岩预裂–注浆改性失水控制方法探讨[J]. 煤田地质与勘探,2021,49(2):159−167.. doi: 10.3969/j.issn.1001-1986.2021.02.020

    ZHAO Chunhu,WANG Hao,JIN Dewu. Discussion on roof water loss control method of coal seam based on pre−splitting grouting reformation(P−G)[J]. Coal Geology & Exploration,2021,49(2):159−167.. doi: 10.3969/j.issn.1001-1986.2021.02.020
    [13] 王洋,武强,丁湘,等. 深埋侏罗系煤层顶板水害源头防控关键技术[J]. 煤炭学报,2019,44(8):2449−2459.

    WANG Yang,WU Qiang,DING Xiang,et al. Key technologies for prevention and control of roof water disaster at sources in deep Jurassic seams[J]. Journal of China Coal Society,2019,44(8):2449−2459.
    [14] 乔伟,王志文,李文平,等. 煤矿顶板离层水害形成机制、致灾机理及防治技术[J]. 煤炭学报,2021,46(2):507−522.

    QIAO Wei,WANG Zhiwen,LI Wenping,et al. Formation mechanism,disaster−causing mechanism and prevention technology of roof bed separation water disaster in coal mines[J]. Journal of China Coal Society,2021,46(2):507−522.
    [15] 武谋达,王建辉,侯恩科,等. 大佛寺煤矿顶板涌水规律及影响因素[J]. 西安科技大学学报,2018,38(4):636−642.

    WU Mouda,WANG Jianhui,HOU Enke,et al. Roof water bursting rules and influential factors of Dafosi Coal Mine[J]. Journal of Xi’an University of Science and Technology,2018,38(4):636−642.
    [16] 靳德武,周振方,赵春虎,等. 西部浅埋煤层开采顶板含水层水量损失动力学过程特征[J]. 煤炭学报,2019,44(3):690−700.

    JIN Dewu,ZHOU Zhenfang,ZHAO Chunhu,et al. Dynamics process analysis of groundwater quantity loss of roof aquifer with shallow seam mining in western China[J]. Journal of China Coal Society,2019,44(3):690−700.
    [17] 杜锋,李振华,姜广辉,等. 西部矿区突水溃沙类型及机理研究[J]. 煤炭学报,2017,42(7):1846−1853.

    DU Feng,LI Zhenhua,JIANG Guanghui,et al. Types and mechanism of water−sand inrush disaster in west coal mine[J]. Journal of China Coal Society,2017,42(7):1846−1853.
    [18] 周振方,靳德武,虎维岳,等. 煤矿工作面回采采空区涌水双指数动态衰减动力学研究[J]. 煤炭学报,2018,43(9):2587−2594.

    ZHOU Zhenfang,JIN Dewu,HU Weiyue,et al. Double−exponential variation law of water–inflow from roof aquifer in goaf of working face with mining process[J]. Journal of China Coal Society,2018,43(9):2587−2594.
    [19] 乔伟,黄阳,袁中帮,等. 巨厚煤层综放开采顶板离层水形成机制及防治方法研究[J]. 岩石力学与工程学报,2014,33(10):2076−2084.

    QIAO Wei,HUANG Yang,YUAN Zhongbang,et al. Formation and prevention of water inrush from roof bed separation with full−mechanized caving mining of ultra thick coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2076−2084.
    [20] 范立民,马雄德,冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报,2015,40(8):1711−1717.

    FAN Limin,MA Xiongde,JI Ruijun. Progress in engineering practice of water−preserved coal mining in western eco−environment frangible area[J]. Journal of China Coal Society,2015,40(8):1711−1717.
    [21] 徐会军,赵宝峰,周勇,等. 基于熵权物元可拓模型的工作面顶板水害评价[J]. 采矿与安全工程学报,2018,35(1):112−117.

    XU Huijun,ZHAO Baofeng,ZHOU Yong,et al. Evaluation on water disaster from roof strata based on the entropy−weight and matter−element extension model[J]. Journal of Mining & Safety Engineering,2018,35(1):112−117.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  17
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2021-11-07
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-02-11

目录

    /

    返回文章
    返回