留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同冷却方式下高温花岗岩细观损伤量化和机理分析

张森 舒彪 梁铭 路伟 胡永鹏 薛卉

张森,舒彪,梁铭,等.不同冷却方式下高温花岗岩细观损伤量化和机理分析[J].煤田地质与勘探,2022,50(2):106−114. doi: 10.12363/issn.1001-1986.21.06.0346
引用本文: 张森,舒彪,梁铭,等.不同冷却方式下高温花岗岩细观损伤量化和机理分析[J].煤田地质与勘探,2022,50(2):106−114. doi: 10.12363/issn.1001-1986.21.06.0346
ZHANG Sen,SHU Biao,LIANG Ming,et al.Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes[J].Coal Geology & Exploration,2022,50(2):106−114. doi: 10.12363/issn.1001-1986.21.06.0346
Citation: ZHANG Sen,SHU Biao,LIANG Ming,et al.Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes[J].Coal Geology & Exploration,2022,50(2):106−114. doi: 10.12363/issn.1001-1986.21.06.0346

不同冷却方式下高温花岗岩细观损伤量化和机理分析

doi: 10.12363/issn.1001-1986.21.06.0346
基金项目: 国家自然科学基金面上项目(42072304);湖南省科技创新计划项目(2021RC3009);湖南省自然科学基金青年基金项目(2021JJ40726)
详细信息
    第一作者:

    张森,1996年生,男,贵州遵义人,硕士研究生,从事非常规能源开采等方面的研究工作. E-mail:1834382930@qq.com

    通信作者:

    舒彪,1986年生,男,湖南双峰人,博士,副教授,博士生导师,从事岩石力学与非常规能源开采等方面的研究工作. E-mail:biaoshu@csu.edu.cn

  • 中图分类号: TU45

Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes

  • 摘要: 冷冲击是一种导致高温岩石破裂从而有效提高地热储层渗透性的方法。为了对不同加热温度下冷冲击后造成的花岗岩损伤程度进行定量分析,探究冷冲击作用下的损伤机理,利用岩石薄片观察和SEM扫描技术对自然冷却和遇水冷却下的高温花岗岩样损伤进行分析。结果表明,当加热温度从200℃提高到800℃时,岩样中心处的薄片A在自然冷却和遇水冷却下的裂隙密度分别增加了17.6%~144.7%和27.6%~163.7%,距圆心12.5 mm的薄片B在自然冷却和遇水冷却下的裂隙密度分别增加了40.1%~202.8%和61.3%~222.7%。随着加热温度的升高,花岗岩损伤程度变大;遇水冷却比自然冷却对花岗岩的损伤程度更大;而由于热梯度的存在,离试样表面越近所受的损伤程度越大。花岗岩试样热损伤是矿物颗粒膨胀和收缩、冷冲击以及热物理化学变化等机制混合作用的结果。研究结果不仅为理解冷冲击对高温花岗岩损伤的影响提供实验参考,且对指导热刺激法在储层改造中的应用至关重要。

     

  • 图  岩石样品

    Fig. 1  Rock samples

    图  试样细观观测样品制备过程

    Fig. 2  Sample preparation process

    图  岩石薄片A的观察结果

    Fig. 3  Observations of rock thin section A

    图  岩石薄片B观察结果

    Fig. 4  Observations of rock thin section B

    图  花岗岩样品在自然冷却下的SEM扫描结果

    Fig. 5  SEM scanning results of granite samples under natural cooling

    图  花岗岩样品在遇水冷却下的SEM扫描结果

    Fig. 6  SEM scanning results of granite samples under water cooling

    图  岩石薄片A裂隙分布热图

    Fig. 7  Heat maps of fracture distribution of rock thin section A

    图  岩石薄片B裂隙分布热图

    Fig. 8  Heat maps of fracture distribution of rock thin section B

    表  1  不同冷却方式下岩石薄片A、B裂隙密度随温度的变化

    Table  1  Changes of crack density with temperature of rock thin senction A and B under different cooling modes

    温度/℃过岩样端面圆心的薄片A
    裂隙占比/%
    距岩样圆心12.5 mm的薄片B
    裂隙占比/%
    自然冷却遇水冷却自然冷却遇水冷却
    256.756.756.756.75
    2007.948.619.4610.89
    4009.7910.7811.0912.54
    50010.7511.9513.7915.71
    60011.8214.8215.6418.21
    80016.5217.820.4421.78
    下载: 导出CSV
  • [1] CUI Guodong,ZHANG Liang,REN Bo,et al. Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2:Heat mining rate and salt precipitation effects[J]. Applied Energy,2016,183:837−852.. doi: 10.1016/j.apenergy.2016.09.029
    [2] 张浩,徐拴海,杨雨,等. 地热井固井材料导热性能影响因素[J]. 煤田地质与勘探,2020,48(2):195−201.. doi: 10.3969/j.issn.1001-1986.2020.02.029

    ZHANG Hao,XU Shuanhai,YANG Yu,et al. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. Coal Geology & Exploration,2020,48(2):195−201.. doi: 10.3969/j.issn.1001-1986.2020.02.029
    [3] 许天福,张延军,曾昭发,等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报,2012,30(32):42−45.. doi: 10.3981/j.issn.1000-7857.2012.32.004

    XU Tianfu,ZHANG Yanjun,ZENG Zhaofa,et al. Technology progress in an enhanced geothermal system(hot dry rock)[J]. Science & Technology Review,2012,30(32):42−45.. doi: 10.3981/j.issn.1000-7857.2012.32.004
    [4] SIRATOVICH P A,VILLENEUVE M C,COLE J W,et al. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80:265−280.. doi: 10.1016/j.ijrmms.2015.09.023
    [5] FREIRE-LISTA D M,FORT R,VARAS-MURIEL M J. Thermal stress-induced microcracking in building granite[J]. Engineering Geology,2016,206:83−93.. doi: 10.1016/j.enggeo.2016.03.005
    [6] ZHAO Zhihong. Thermal influence on mechanical properties of granite:A microcracking perspective[J]. Rock Mechanics and Rock Engineering,2016,49(3):747−762.. doi: 10.1007/s00603-015-0767-1
    [7] WANG H F,BONNER B P,CARLSON S R,et al. Thermal stress cracking in granite[J]. Journal of Geophysical Research,1989,94(B2):1745−1758.. doi: 10.1029/JB094iB02p01745
    [8] AVANTHI ISAKA B L,GAMAGE R P,RATHNAWEERA T D,et al. An influence of thermally-induced micro-cracking under cooling treatments:Mechanical characteristics of Australian granite[J]. Energies,2018,11(6):1−24.
    [9] SHEN Yanjun,HOU Xin,YUAN Jiangqiang,et al. Experimental study on temperature change and crack expansion of high temperature granite under different cooling shock treatments[J]. Energies,2019,12(11):1−17.
    [10] SHEN Yanjun,HOU Xin,YUAN Jiangqiang,et al. Thermal cracking characteristics of high-temperature granite suffering from different cooling shocks[J]. International Journal of Fracture,2020,225(2):153−168.. doi: 10.1007/s10704-020-00470-2
    [11] JIN Peihua,HU Yaoqing,SHAO Jixi,et al. Influence of different thermal cycling treatments on the physical,mechanical and transport properties of granite[J]. Geothermics,2019,78:118−128.. doi: 10.1016/j.geothermics.2018.12.008
    [12] 阴伟涛,赵阳升,冯子军. 高温三轴应力下粗、细粒花岗岩力学特性研究[J]. 太原理工大学学报,2020,51(5):627−633.

    YIN Weitao,ZHAO Yangsheng,FENG Zijun. Study on the mechanical properties of coarse-grained and fine-grained granite under high temperature triaxial stress[J]. Journal of Taiyuan University of Technology,2020,51(5):627−633.
    [13] KIM K,KEMENY J,NICKERSON M. Effect of rapid thermal cooling on mechanical rock properties[J]. Rock Mechanics and Rock Engineering,2014,47(6):2005−2019.. doi: 10.1007/s00603-013-0523-3
    [14] GLOVER P W J,BAUD P,DAROT M,et al. α/β phase transition in quartz monitored using acoustic emissions[J]. Geophysical Journal International,1995,120(3):775−782.. doi: 10.1111/j.1365-246X.1995.tb01852.x
    [15] SMALLEY I,MARKOVIC S B. Controls on the nature of loess particles and the formation of loess deposits[J]. Quaternary International,2019,502(part A):160−164.
    [16] MAHABADI O K,TATONE B S A,GRASSELLI G. Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks[J]. Journal of Geophysical Research:Solid Earth,2014,119(7):5324−5341.. doi: 10.1002/2014JB011064
    [17] JUST J,KONTNY A. Thermally induced alterations of minerals during measurements of the temperature dependence of magnetic susceptibility:A case study from the hydrothermally altered Soultz-sous-Forêts granite,France[J]. International Journal of Earth Sciences,2012,101(3):819−839.. doi: 10.1007/s00531-011-0668-9
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  33
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-10-06
  • 录用日期:  2021-11-09
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-02-11

目录

    /

    返回文章
    返回