留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多方法的煤层底板突水危险性评价

任君豪 王心义 王麒 王俊智 张波 郭水涛

任君豪,王心义,王麒,等.基于多方法的煤层底板突水危险性评价[J].煤田地质与勘探,2022,50(2):89−97. doi: 10.12363/issn.1001-1986.21.06.0342
引用本文: 任君豪,王心义,王麒,等.基于多方法的煤层底板突水危险性评价[J].煤田地质与勘探,2022,50(2):89−97. doi: 10.12363/issn.1001-1986.21.06.0342
REN Junhao,WANG Xinyi,WANG Qi,et al.Risk assessment of water inrush from coal seam floors based on multiple methods[J].Coal Geology & Exploration,2022,50(2):89−97. doi: 10.12363/issn.1001-1986.21.06.0342
Citation: REN Junhao,WANG Xinyi,WANG Qi,et al.Risk assessment of water inrush from coal seam floors based on multiple methods[J].Coal Geology & Exploration,2022,50(2):89−97. doi: 10.12363/issn.1001-1986.21.06.0342

基于多方法的煤层底板突水危险性评价

doi: 10.12363/issn.1001-1986.21.06.0342
基金项目: 国家自然科学基金项目(41802186,41972254);河南省创新型科技人才队伍建设工程项目(CXTD2016053)
详细信息
    第一作者:

    任君豪,1996年生,男,河南焦作人,硕士研究生,从事矿井水文地质的研究工作. E-mail:740549966@qq.com

    通信作者:

    王心义,1963年生,男,河南睢县人,博士,教授,博士生导师,从事矿井水文地质和地热水文地质的研究工作. E-mail:wangxy@hpu.edu.cn

  • 中图分类号: TD745+.2

Risk assessment of water inrush from coal seam floors based on multiple methods

  • 摘要: 选择平顶山煤田二矿、十矿和十二矿51个钻孔的隔水层厚度、断层复杂程度、含水层水压、含水层单位涌水量、采高5个因素为评价因子,以层次分析法和灰色关联分析法计算的常权权重为基础,应用变权理论确定各指标因子的变权权重;分别利用物元可拓法、模糊可变集理论、突变理论、模糊综合评价法,对煤层底板突水危险性进行评价并确定突水危险性等级。与实际开采情况的对比分析证明,模糊可变集理论是最适宜研究区的底板突水危险性评价方法,评价结果与开采实际较为吻合。模糊可变集理论的评价表明,二矿、十矿、十二矿带压区内安全区占比分别为4.08%、14.30%、0,低威胁区占比分别为76.91%、83.14%、85.78%,高威胁区占比分别为19.01%、2.56%、14.22%,研究区内暂无危险区。

     

  • 图  平煤3矿带压开采区分布

    Fig. 1  Distribution of the mining area under pressure in three coal mines of Pingdingshan Coalfield

    图  研究区综合柱状图

    Fig. 2  Comprehensive drill log of the study area

    图  突水危险性评价指标

    Fig. 3  Risk assessment index of water inrush

    图  不同评价方法的分区结果

    Fig. 4  Zoning results of different evaluation methods

    表  1  指标因子赋值结果

    Table  1  Quantitative results of index factors

    钻孔
    编号
    水压/
    MPa
    单位涌水量/
    (L·s–1·m–1)
    采高/m隔水层厚度/
    m
    断层分维值钻孔
    编号
    水压/
    MPa
    单位涌水量/
    (L·s–1·m–1)
    采高/m隔水层厚度/
    m
    断层分维值
    2-10.52640.18231.785715.70780.887310-140.50430.02603.264781.542 00.7971
    2-20.54980.51791.182313.68150.845110-150.54230.02823.118982.13740.9044
    2-30.59511.08080.867917.70040.810910-160.59930.03023.060282.46510.9421
    2-40.54220.94901.391226.40580.818710-172.77560.05983.650080.43000.7061
    2-50.43050.13831.893617.30440.899410-182.83970.04225.970090.84000.7189
    2-60.46900.50981.076514.48880.809410-192.37820.04236.050080.79000.7263
    2-70.48930.80190.554415.21810.775810-202.02130.05006.850080.46000.6412
    2-80.47660.86241.225726.64660.7710均值1.25890.03733.438981.63090.7712
    2-90.66300.85102.022421.48431.017312-12.44070.22703.826496.53091.3096
    2-100.55440.69320.493947.75891.093512-22.29790.21713.839796.19091.4242
    2-110.51960.53001.314124.64791.071012-32.17360.21023.845695.90221.4172
    2-120.50080.40431.278827.47851.294412-42.09240.20703.845295.72551.3979
    2-130.42000.29010.477844.98260.964312-51.90330.17723.886 095.46571.3484
    均值0.51820.60081.197324.11580.927512-61.97690.17623.893295.65921.3415
    10-11.49830.04453.743780.43390.646712-72.09580.17443.898896.02211.2593
    10-21.49330.04242.874580.74300.841812-82.26920.16953.888396.67851.0193
    10-31.46700.04052.103181.30420.866312-92.33530.16074.211185.08390.9195
    10-41.34770.03981.807581.34660.875812-102.26000.17214.381185.23411.0433
    10-51.20360.03871.486381.35040.869012-112.21950.17154.427885.28741.0911
    10-61.17250.03961.876780.88420.903312-121.97860.15604.307785.53041.2130
    10-71.13720.04142.623480.42730.736712-131.77890.12713.918485.82491.1442
    10-81.12410.04363.250280.29760.469512-141.86010.10443.770585.65410.9105
    10-90.67660.03093.173582.24450.908412-151.86420.01983.305485.23980.7989
    10-100.65990.02943.295981.91220.861812-162.95000.33185.744984.92380.9477
    10-110.63270.02623.511381.22580.721512-172.79000.31764.659584.69510.8017
    10-120.62690.02483.611780.81900.615212-182.23000.02973.742784.31920.7926
    10-130.47790.02473.455680.96420.6712均值2.19540.17504.077489.99821.1211
    下载: 导出CSV

    表  2  各指标对应的变权区间

    Table  2  Variable weight intervals of each index

    评价因子惩罚区间不激励不惩罚区间初激励区间强激励区间
    水压 0≤x<0.1899 0.1899≤x<0.4817 0.4817≤x<0.8649 0.8649≤x≤1
    单位涌水量 0≤x<0.2250 0.2250≤x<0.5578 0.5578≤x<0.8350 0.8350≤x≤1
    采高 0≤x<0.1508 0.1508≤x<0.3564 0.3564≤x<0.7414 0.7414≤x≤1
    隔水层厚度 0≤x<0.0157 0.0157≤x<0.1012 0.1012≤x<0.3023 0.3023≤x≤1
    断层分维值 0≤x<0.2978 0.2978≤x<0.4832 0.4832≤x<0.7427 0.7427≤x≤1
    下载: 导出CSV

    表  3  不同参数条件下的计算结果

    Table  3  Calculation results under different parameter conditions

    参数k=1, p=1k=2, p=1k=1, p=2k=2, p=2$\bar H$
    级别特征值2.031 31.972 32.112 72.049 82.046 4
    下载: 导出CSV

    表  4  突水危险性评价指标及结果

    Table  4  Water inrush risk assessment indexes and results

    评价方法不同指标评价结果
    水压单位涌
    水量
    采高隔水层
    厚度
    断层复
    杂程度
    初始隶属函数0.342 80.104 70.765 00.209 21
    初始突变级数0.585 50.471 30.874 60.593 61
    中间变量指标值0.528 40.734 11
    中间突变级数值0.726 90.902 11
    总突变隶属函数值0.876 3
    下载: 导出CSV

    表  5  不同方法的底板突水危险性评价结果

    Table  5  Risk assessment results by different methods

    钻孔编号物元
    可拓法
    模糊
    可变集
    突变
    理论
    模糊
    综合评判
    钻孔编号物元
    可拓法
    模糊
    可变集
    突变
    理论
    模糊
    综合评判
    2-110-14
    2-210-15
    2-310-16
    2-410-17
    2-510-18
    2-610-19
    2-710-20
    2-812-1
    2-912-2
    2-1012-3
    2-1112-4
    2-1212-5
    2-1312-6
    10-112-7
    10-212-8
    10-312-9
    10-412-10
    10-512-11
    10-612-12
    10-712-13
    10-812-14
    10-912-15
    10-1012-16
    10-1112-17
    10-1212-18
    10-13
    下载: 导出CSV

    表  6  二矿有效隔水层厚度

    Table  6  Effective aquiclude thickness of No.2 Coal Mine

    钻孔编号隔水层厚度/m有效隔水层厚度/m钻孔编号隔水层厚度/m有效隔水层厚度/m
    2-1 15.707 8 −4.412 2 2-8 26.646 6 6.526 6
    2-2 13.681 5 −6.438 5 2-9 21.484 3 1.364 3
    2-3 17.700 4 −2.419 6 2-10 47.758 9 27.638 9
    2-4 26.405 8 6.285 8 2-11 24.647 9 4.527 9
    2-5 17.304 4 −2.815 6 2-12 27.478 5 7.358 5
    2-6 14.488 8 −5.631 2 2-13 44.982 6 24.862 6
    2-7 15.218 1 −4.901 9 均值 24.12 3.99
    下载: 导出CSV

    表  7  分区面积及其所占带压区比例

    Table  7  Zoning areas and the proportions in the pressure zones

    矿井名称带压区域面积/km2安全区低威胁区高威胁区
    面积/km2占比/%面积/km2占比/%面积/km2占比/%
    二矿 14.20 0.58 4.08 10.92 76.91 2.70 19.01
    十矿 53.35 7.63 14.30 44.23 83.14 1.49 2.56
    十二矿 27.81 0 0 23.86 85.78 3.95 14.22
    下载: 导出CSV
  • [1] 王纪军. 孙疃煤矿短壁块段式开采底板破坏规律及突水危险性评价研究[D]. 北京: 中国矿业大学(北京), 2019.

    WANG Jijun. Study on failure law and risk of water inrush in shortwall block mining in Suntuan coal mine[D]. Beijing: China University of Mining and Technology(Beijing), 2019.
    [2] 贾建称,巩泽文,靳德武,等. 煤炭地质学“十三五”主要进展及展望[J]. 煤田地质与勘探,2021,49(1):32−44.. doi: 10.3969/j.issn.1001-1986.2021.01.004

    JIA Jiancheng,GONG Zewen,JIN Dewu,et al. The main progress in the 13th five−year plan and the prospect of coal geology[J]. Coal Geology & Exploration,2021,49(1):32−44.. doi: 10.3969/j.issn.1001-1986.2021.01.004
    [3] 董书宁,郭小铭,刘其声,等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J]. 煤田地质与勘探,2020,48(4):1−10.. doi: 10.3969/j.issn.1001-1986.2020.04.001

    DONG Shuning,GUO Xiaoming,LIU Qisheng,et al. Model and selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration,2020,48(4):1−10.. doi: 10.3969/j.issn.1001-1986.2020.04.001
    [4] 国家煤矿安全监察局. 《煤矿防治水细则》[M]. 北京: 煤炭工业出版社, 2018.
    [5] LI Q,MENG X X,LIU Y B,et al. Risk assessment of floor water inrush using entropy weight and variation coefficient model[J]. Geotechnical and Geological Engineering,2019,37(3):1493−1501.. doi: 10.1007/s10706-018-0702-9
    [6] 陈建平,王春雷,王雪冬. 基于CNN神经网络的煤层底板突水预测[J]. 中国地质灾害与防治学报,2021,32(1):50−57.

    CHEN Jianping,WANG Chunlei,WANG Xuedong. Coal mine floor water inrush prediction based on CNN neural network[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):50−57.
    [7] WANG Xinyi,YANG Guang,WANG Qi,et al. Research on water–filled source identification technology of coal seam floor based on multiple index factors[J]. Geofluids,2019(9):1−9.
    [8] QIU Mei,SHI Longqing,TENG Chao,et al. Assessment of water inrush risk using the fuzzy Delphi analytic hierarchy process and grey relational analysis in the Liangzhuang Coal Mine,China[J]. Mine Water and the Environment,2017,36(1):39−50.. doi: 10.1007/s10230-016-0391-7
    [9] 刘守强,武强,李哲,等. 多煤层底板单一含水层矿区突水变权脆弱性评价与应用[J]. 中国矿业大学学报,2021,50(3):587−597.

    LIU Shouqiang,WU Qiang,LI Zhe,et al. Vulnerability evaluation and application of floor water inrush in mining area with multiple coal seams and single aquifer based on variable weight[J]. Journal of China University of Mining & Technology,2021,50(3):587−597.
    [10] 施龙青,张荣遨,韩进,等. 基于熵权法−层次分析法耦合赋权的多源信息融合突水危险性评价[J]. 河南理工大学学报(自然科学版),2020,39(3):17−25.

    SHI Longqing,ZHANG Rong’ao,HAN Jin,et al. Water inrush risk assessment with multi-source information type fusion based on EWM-AHP comprehensive weighting[J]. Journal of Henan Polytechnic University(Natural Science),2020,39(3):17−25.
    [11] ZENG Yifan,LIU Yuanzhang,WU Haixia. Assessment of floor water inrush with vulnerability index method:application in Malan coal mine of Shanxi Province,China[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2017,50(2):169−178.. doi: 10.1144/qjegh2016-105
    [12] WANG Xintong,LI Shucai,XU Zhenhao,et al. Analysis of factors influencing floor water inrush in coal mines:A nonlinear fuzzy interval assessment method[J]. Mine Water and the Environment,2019,38(1):81−92.. doi: 10.1007/s10230-018-00578-x
    [13] HU Yanbo,LI Wenping,WANG Qiqing,et al. Evaluation of water inrush risk from coal seam floors with an AHP−EWM algorithm and GIS[J]. Environmental Earth Sciences,2019,78(10):1−15.
    [14] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264.

    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264.
    [15] YU H T,ZHU S Y,CHEN Y. Comparative analysis of water inrush from the deep coal floor by mining above the confined aquifer[J]. Journal of Mining Science,2019,55(3):407−413.. doi: 10.1134/S1062739119035733
    [16] YANG Binbin,YUAN Junhong,DUAN Lihong,et al. Using GIS and fractal theory to evaluate degree of fault complexity and water yield[J]. Mine Water and the Environment,2019,38(2):261−267.. doi: 10.1007/s10230-018-0563-8
    [17] RUAN Z,LI Cuiping,WU Aixiang,et al. A new risk assessment model for underground mine water inrush based on AHP and D−S evidence theory[J]. Mine Water and the Environment,2019,38(3):488−496.. doi: 10.1007/s10230-018-00575-0
    [18] DING H,WU Q,ZHAO D,et al. Risk assessment of karst collapse using an integrated fuzzy analytic hierarchy process and grey relational analysis model[J]. Geomechanics and Engineering,2019,18(5):515−525.
    [19] WANG Qiang,LI Siqi,HE Gang,et al. Evaluating sustainability of water−energy−food(WEF) nexus using an improved matter−element extension model:A case study of China[J]. Journal of Cleaner Production,2018,202:1097−1106.. doi: 10.1016/j.jclepro.2018.08.213
    [20] 曾一凡,武强,杜鑫,等. 再论含水层富水性评价的“富水性指数法”[J]. 煤炭学报,2020,45(7):2423−2431.

    ZENG Yifan,WU Qiang,DU Xin,et al. Further research on “water–richness index method” for evaluation of aquifer water abundance[J]. Journal of China Coal Society,2020,45(7):2423−2431.
    [21] WANG Xiaoling,YU Hongling,LYU Peng,et al. Seepage safety assessment of concrete gravity Dam based on matter−element extension model and FDA[J]. Energies,2019,12(3):1−21.
    [22] 董东林,李祥,林刚,等. 突水水源的独立性权–模糊可变理论识别模型[J]. 煤田地质与勘探,2019,47(5):48−53.. doi: 10.3969/j.issn.1001-1986.2019.05.007

    DONG Donglin,LI Xiang,LIN Gang,et al. Identification model of the independence right–fuzzy variable theory of water inrush source[J]. Coal Geology & Exploration,2019,47(5):48−53.. doi: 10.3969/j.issn.1001-1986.2019.05.007
    [23] 韩承豪,魏久传,谢道雷,等. 基于集对分析–可变模糊集耦合法的砂岩含水层富水性评价:以宁东矿区金家渠井田侏罗系直罗组含水层为例[J]. 煤炭学报,2020,45(7):2432−2443.

    HAN Chenghao,WEI Jiuchuan,XIE Daolei,et al. Water−richness evaluation of sandstone aquifer based on set pair analysis−variable fuzzy set coupling method:A case from Jurassic Zhiluo Formation of Jinjiaqu coal mine in Ningdong mining area[J]. Journal of China Coal Society,2020,45(7):2432−2443.
    [24] 王心义,姚孟杰,张建国,等. 基于改进AHP法与模糊可变集理论的煤层底板突水危险性评价[J]. 采矿与安全工程学报,2019,36(3):558−565.

    WANG Xinyi,YAO Mengjie,ZHANG Jianguo,et al. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J]. Journal of Mining and Safety Engineering,2019,36(3):558−565.
    [25] LIU Shiliang,LI Wenping. Fuzzy comprehensive risk evaluation of roof water inrush based on catastrophe theory in the Jurassic coalfield of northwest China[J]. Journal of Intelligent & Fuzzy Systems,2019,37(3):1−11.
    [26] 杜崧,肖明,陈俊涛. 洞室块体危险性分析的突变级数评价法研究[J]. 岩土力学,2021,42(9):2578−2588.

    DU Song,XIAO Ming,CHEN Juntao. Catastrophe progression method for geological block hazard analysis of underground caverns[J]. Rock and Soil Mechanics,2021,42(9):2578−2588.
    [27] 姬亚东. 基于聚类分析与模糊综合评判的煤层顶板涌水危险性评价[J]. 矿业安全与环保,2019,46(4):68−72.. doi: 10.3969/j.issn.1008-4495.2019.04.015

    JI Yadong. The risk assessment of roof water inrush based on cluster analysis and fuzzy comprehensive evaluation[J]. Mining Safety and Environmental Protection,2019,46(4):68−72.. doi: 10.3969/j.issn.1008-4495.2019.04.015
    [28] 国家煤炭工业局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 北京: 煤炭工业出版社, 2000.
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  10
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26
  • 修回日期:  2021-11-25
  • 录用日期:  2022-02-25
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-02-11

目录

    /

    返回文章
    返回