留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平井煤岩界面方位电磁波测井仪器探测性能

张意 康正明 冯宏 韩雪 李飞 李新

张意,康正明,冯宏,等.水平井煤岩界面方位电磁波测井仪器探测性能[J].煤田地质与勘探,2022,50(2):140−149. doi: 10.12363/issn.1001-1986.21.06.0334
引用本文: 张意,康正明,冯宏,等.水平井煤岩界面方位电磁波测井仪器探测性能[J].煤田地质与勘探,2022,50(2):140−149. doi: 10.12363/issn.1001-1986.21.06.0334
ZHANG Yi,KANG Zhengming,FENG Hong,et al.Detection performance of the azimuthal electromagnetic wave logging instrument at coal-rock interface in horizontal wells[J].Coal Geology & Exploration,2022,50(2):140−149. doi: 10.12363/issn.1001-1986.21.06.0334
Citation: ZHANG Yi,KANG Zhengming,FENG Hong,et al.Detection performance of the azimuthal electromagnetic wave logging instrument at coal-rock interface in horizontal wells[J].Coal Geology & Exploration,2022,50(2):140−149. doi: 10.12363/issn.1001-1986.21.06.0334

水平井煤岩界面方位电磁波测井仪器探测性能

doi: 10.12363/issn.1001-1986.21.06.0334
基金项目: 陕西省自然科学基础研究计划项目(2021JQ-590);国家自然科学基金联合基金项目(U19B6003,U20B2029)
详细信息
    第一作者:

    张意,1986年生,男,新疆伊宁人,博士研究生,工程师,研究方向为电磁波测井方法及仪器开发. E-mail:yizhang86@163.com

    通信作者:

    康正明,1989年生,男,陕西靖边人,博士,讲师,从事电法测井理论方法研究. E-mail:kzm991430414@sina.cn

  • 中图分类号: P631

Detection performance of the azimuthal electromagnetic wave logging instrument at coal-rock interface in horizontal wells

  • 摘要: 煤岩界面的预先、精准识别是实现智能化开采,提高开采效率和降低成本的关键技术之一,方位电磁波测井已在石油测井岩性界面识别中获得较好效果,但对煤岩界面识别情况的研究较少。为了研究方位电磁波在煤田测井环境中的适用性和探测性能,使用一维广义反射系数法计算磁场分量,并使用快速Hankel变换加快积分计算速度,模拟线圈系组合方式、频率、源距、线圈系半径、电阻率对比度、发射电流和电阻率各向异性对煤田方位电磁波测井响应的影响。结果表明:方位电磁波测井仪器能够分辨煤岩界面,对煤岩界面识别具有较大的应用潜力。线圈系半径和发射电流主要影响仪器响应信号的大小;在一定电阻率对比度范围内,幅度比和相位差在界面附近的幅值随电阻率对比度增大而增大,高阻地层电阻率各向异性对幅度比和相位差影响较小;仪器发射频率、源距、电阻率对比度同时影响方位信号最大探边深度。

     

  • 图  不同方位电磁波仪器线圈系组合

    Fig. 1  Schematic diagram of coil system combination of the electromagnetic wave instrument in different directions(T is the transmitting coil and R is the receiving coil)

    图  方位线圈组合方式

    Fig. 2  Azimuth coil combination modes

    图  三层地层模型

    $ \alpha $—井斜角;$ {\rho _{\rm{U}}} $—顶板电阻率;$ {\rho _{\rm{C}}} $—煤层电阻率;$ {\rho _{\rm{D}}} $—底板电阻率

    Fig. 3  The three-layer stratigraphic model

    图  不同线圈幅度比和相位差曲线

    (曲线a、b、c分别对应图2中线圈原组合a、b、c)

    Fig. 4  The amplitude ratio and phase difference curves

    图  不同发射频率响应信号对比

    Fig. 5  Comparison diagrams of different transmitted frequency response signals

    图  不同源距响应信号对比

    Fig. 6  Comparison diagrams of response signals from different source distances

    图  不同线圈系半径测量响应对比

    Fig. 7  Comparison diagrams of measurement response of different coil system radii

    图  不同线圈系半径电压响应曲线

    Fig. 8  The voltage response law of different coil system radii

    图  不同电阻率对比度响应对比

    Fig. 9  Comparison diagrams of contrast responses of different resistivity

    图  10  不同电阻率对比度时的地质信号最大值变化曲线

    Fig. 10  Variation law of the maximum value of geological signals with different resistivity contrast

    图  11  不同发射电流响应对比

    Fig. 11  Comparison diagrams of different emission current responses

    图  12  低电阻率各向异性响应对比

    Fig. 12  Comparison diagrams of low resistivity anisotropy response

    图  13  高电阻率各向异性响应对比

    Fig. 13  Comparison diagrams of high resistivity anisotropy response

    图  14  地质信号边界探测能力随电阻率对比度变化的“Picasso”图

    Fig. 14  Picasso maps of geological signal boundary detection capability varying with resistivity contrast

    图  15  最大探边距离随源距和频率变化的“Picasso”图

    Fig. 15  Picasso maps of maximum probe distance change with source distance and frequency

    表  1  常用钻杆尺寸

    Table  1  Common drill pipe dimensions

    应用领域直径/mm
    煤矿63.5, 73.0, 82.0, 89.0, 108.0
    油田73.0, 89.0, 101.6, 127.0, 139.7
    下载: 导出CSV
  • [1] 葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774−788.

    GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774−788.
    [2] 王海舰,黄梦蝶,高兴宇,等.考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995−2008.

    WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995−2008.
    [3] 张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363−3370.

    ZHANG Qiang,SUN Shaoan,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363−3370.
    [4] ZHANG Guoxin,WANG Zengcai,ZHAO Lei. Recognition of rock-coal interface in top coal caving through tail beam vibrations by using stacked sparse autoencoders[J]. Journal of Vibroengineering,2016,18(7):4261−4275.. doi: 10.21595/jve.2016.17386
    [5] 葛世荣. 采煤机技术发展历程(六):煤岩界面探测[J]. 中国煤炭,2020,46(11):10−24.. doi: 10.3969/j.issn.1006-530X.2020.11.002

    GE Shirong. The development history of coal shearer technology(Part six):Coal-rock interface detection[J]. China Coal,2020,46(11):10−24.. doi: 10.3969/j.issn.1006-530X.2020.11.002
    [6] 王莉,苏波. 综采工作面煤岩界面识别方法研究[J]. 中国设备工程,2020(21):215−216.. doi: 10.3969/j.issn.1671-0711.2020.21.117

    WANG Li,SU Bo. Study on identification method of coal-rock interface in fully mechanized mining face[J]. China Plant Engineering,2020(21):215−216.. doi: 10.3969/j.issn.1671-0711.2020.21.117
    [7] 王文天. 定向钻孔雷达方位识别及三维成像算法研究[D]. 长春: 吉林大学, 2018.

    WANG Wentian. Research on azimuth recognition and 3D imaging algorithm of directional borehole radar[D]. Changchun: Jilin University, 2018.
    [8] RODNEY P F,WISLER M. Electromagnetic wave resistivity MWD tool[J]. SPE Drilling Engineering,1986,1(5):337−346.. doi: 10.2118/12167-PA
    [9] DUPUIS C,DENICHOU J M. Automatic inversion of deep-directional-resistivity measurements for well placement and reservoir description[J]. The Leading Edge,2015,34(5):504−512.. doi: 10.1190/tle34050504.1
    [10] LI Qiming, OMERAGIC D, CHOU L, et al. New directional electromagnetic tool for proactive geosteering and accurate formation evaluation while drilling[C]//SPWLA 46th Annual Logging Symposium. 2005: 26–29.
    [11] 吴冲. 随钻方位电磁波电阻率测井方法研究[D]. 北京: 中国石油大学(北京), 2017.

    WU Chong. Study on azimuthal electromagnetic resistivity logging while drilling[D]. Beijing: China University of Petroleum(Beijing), 2017.
    [12] WU Zhenguan,WANG Lei,FAN Yiren,et al. Detection performance of azimuthal electromagnetic logging while drilling tool in anisotropic media[J]. Applied Geophysics,2020,17:1−12.. doi: 10.1007/s11770-020-0804-z
    [13] 王磊,范宜仁,操应长,等. 大斜度井/水平井随钻方位电磁波测井资料实时反演方法[J]. 地球物理学报,2020,63(4):1715−1724.. doi: 10.6038/cjg2020M0617

    WANG Lei,FAN Yiren,CAO Yingchang,et al. Real-time inversion of logging-while-drilling azimuthal electromagnetic measurements acquired in high-angle and horizontal wells[J]. Chinese Journal of Geophysics,2020,63(4):1715−1724.. doi: 10.6038/cjg2020M0617
    [14] CONSTABLE M V, ANTONSEN F, STALHEIM S O, et al. Looking ahead of the bit while drilling: From vision to reality[C]// SPWLA 57th Annual Logging Symposium, 2016, 57(5): 426–446.
    [15] 柴斌, 许小凯, 张川, 等. 六种不同变质程度煤的电阻率研究[J/OL]. 地球物理学进展, 2021: 1–13[2021-04-19]. http://kns.cnki.net/kcms/detail/11.2982.p.20201109.1440.134.html

    CHAI Bin, XU Xiaokai, ZHANG Chuan, et al. Characteristics of resistivity and its anisotropy of six kinds of metamorphic coals[J/OL].Progress in Geophysics(in Chinese), 2021: 1–13[2021-04-19]. http://kns.cnki.net/kcms/detail/11.2982.p.20201109.1440.134.html.
    [16] CHEN Gang,FAN Yiren,LI Quanxin. A study of coalbed methane(CBM) reservoir boundary detections based on azimuth electromagnetic waves[J]. Journal of Petroleum Science and Engineering,2019,179:432−443.. doi: 10.1016/j.petrol.2019.04.063
    [17] 陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206.

    CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206.
    [18] CHEN Gang,FAN Yiren,LI Quanxin. Using an azimuth electromagnetic wave imaging method to detect and characterize coal–seam interfaces and low–resistivity anomalies[J]. Journal of Environmental and Engineering Geophysics,2020,25(1):75−87.. doi: 10.2113/JEEG19-041
    [19] 王磊. 深探测多分量随钻电磁波测井理论与正反演研究[D]. 青岛: 中国石油大学(华东), 2018.

    WANG Lei. Deep-detection multi-component logging-while-drilling electromagnetic logging: Theory, forward modeling and inversion/data processing[D]. Qingdao: China University of Petroleum(East China), 2018.
    [20] 倪尧. 三分量感应测井响应分析及反演研究[D]. 成都: 电子科技大学, 2016.

    NI Yao. Response analysis and inversion of multicomponent induction logging[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  17
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-20
  • 修回日期:  2021-10-28
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-02-14

目录

    /

    返回文章
    返回