留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潞安矿区煤层气井产出水地球化学特征及意义

华明国 田林 张燕 李佳 曹永恒

华明国,田林,张燕,等.潞安矿区煤层气井产出水地球化学特征及意义[J].煤田地质与勘探,2022,50(2):65−71. doi: 10.12363/issn.1001-1986.21.06.0328
引用本文: 华明国,田林,张燕,等.潞安矿区煤层气井产出水地球化学特征及意义[J].煤田地质与勘探,2022,50(2):65−71. doi: 10.12363/issn.1001-1986.21.06.0328
HUA Mingguo,TIAN Lin,ZHANG Yan,et al.Geochemical characteristics and significance of water produced by coalbed methane wells in Lu’an Mining Area[J].Coal Geology & Exploration,2022,50(2):65−71. doi: 10.12363/issn.1001-1986.21.06.0328
Citation: HUA Mingguo,TIAN Lin,ZHANG Yan,et al.Geochemical characteristics and significance of water produced by coalbed methane wells in Lu’an Mining Area[J].Coal Geology & Exploration,2022,50(2):65−71. doi: 10.12363/issn.1001-1986.21.06.0328

潞安矿区煤层气井产出水地球化学特征及意义

doi: 10.12363/issn.1001-1986.21.06.0328
基金项目: 国家科技重大专项课题(2016ZX05067-006)
详细信息
    第一作者:

    华明国,1981年生,男,江苏扬州人,博士,高级工程师,从事煤矿安全技术研究. E-mail:huamingguo_0418@163.com

    通信作者:

    田林,1986年生,男,河南焦作人,博士,副教授,从事煤层气地质及开发技术研究. E-mail:lintian@hpu.edu.cn

  • 中图分类号: TE132

Geochemical characteristics and significance of water produced by coalbed methane wells in Lu’an Mining Area

  • 摘要: 水文地球化学分析是研究煤层气富集条件及开采动力条件的重要方法。以沁水盆地中南段潞安矿区山西组3号煤煤层气井产出水为研究对象,开展了矿化度、H/O稳定同位素和主要离子浓度分布特征研究,结合区域构造展布特征及煤层气开发历史分析了区内煤层气开发优选区。结果表明:(1)潞安矿区分布有3个高矿化度区(五阳井田、余吾西南部、高河北部–古城井田),地下水平均矿化度2 000~3 200 mg/L;1个低矿化度区域(常村井田和余吾井田中东部),地下水平均矿化度1 500 mg/L。(2)煤层产出水中的$ \delta \mathrm{D} $$ {\delta }^{18}\mathrm{O} $值均落在该区大气降水线附近,表明该区各含水层均有来自大气降水的补给,且煤层中的水主要来源于大气降水。(3)潞安矿区地表水从东部太行山裸露岩层区向下运移至含煤地层和下部奥陶系含水层,而后在灰岩系中向东出露地表,补给辛安泉域。研究区内两条区域断层文王山断层和二岗山断层是开放性导水断层,为地下水运移提供了通道,其展布特征决定了地下水的基本流动规律,其控制区域内的煤层气含量较低;地下水在挤压性断层中华–安昌断层附近、天仓向斜和许村向斜轴部相对滞流,矿化度较高,是煤层气富集区,也是潞安矿区煤层气开发的优选区。

     

  • 图  潞安矿区构造纲要

    Fig. 1  Structure map of Lu’an Mining Area

    图  潞安矿区区域水文地质

    Fig. 2  Regional hydrological map of Lu’an Mining Area

    图  潞安矿区3号煤储层水矿化度等值线

    Fig. 3  Contour map of water salinity in No.3 coal seam

    图  研究区H/O同位素分布曲线

    Fig. 4  The H/O isotope distribution in research area

    图  潞安矿区3号煤层水化学Piper图

    Fig. 5  Hydrochemical Piper map of coal water samples from No. 3 coal seam of Lu’an Mining Area

    表  1  离子浓度测试方法

    Table  1  Testing method for ion concentration

    离子测试方法执行标准
    K+、Na+分光光度法DZ/T 0064.27—2021
    Ca2+、Mg2+EDTA滴定法DZ/T 0064.13—2021
    Cl硝酸银滴定法DZ/T 0064.50—2021
    CO3 2− 、HCO3 酸碱滴定法DZ/T 0064.49—2021
    SO4 2−EDTA滴定法DZ/T 0064.64—2021
    下载: 导出CSV

    表  2  实验水样矿化度分析结果

    Table  2  Analysis results of salinity of water samples

    井田矿化度/(mg·L−1)标准差变异系数
    最小~最大/平均值
    五阳2 910~5 890/4 117.1996.370.242
    余吾927~12 800/3 071.82 879.030.937
    常村729~1 450/1 119.8252.320.225
    李村822~2 460/1 340.1395.180.295
    高河1 220~3 700/2 071.0781.270.377
    下载: 导出CSV

    表  3  试验水样H/O同位素测试成果

    Table  3  H/O isotope test results of water samples

    区域水样号δ18O/‰δD/‰
    最小~最大值/平均值
    地表水1−9.2~−8.5/−8.9−68.2~−58.9/−63.6
    3号煤层顶板2−11.3~−9.8/−10.5−81.9~−80.2/−81.1
    3号煤层WY3−11.5~−9.0/−10.2−76.5~−71.6/−74.9
    WY4−11.2~−8.4/−9.8−75.9~−74.3/−75.5
    CC5−12.1~−10.1/−11.1−84.2~−81.3/−83.2
    CC6−11.4~−10.4/−10.9−85.3~−83.5/−84.1
    CC7−12.9~−11.7/−12.5−83.8~−82.8/−83.5
    CC8−12.8~−10.1/−12.4−84.2~−83.5/−83.9
    YW9−11.7~−10.7/−11.2−81.6~−80.2/−81.1
    YW10−10.9~−10.5/−10.8−82.4~−80.5/−81.6
    平均值−11.11−80.98
    下载: 导出CSV

    表  4  潞安矿区3号煤层主要离子浓度测试结果

    Table  4  Test results of main ion concentration of water samples from No. 3 coal seam of Lu’an Mining Area

    矿区pH电导率/
    (s·m−1)
    TDS/
    (mg·L−1)
    主要离子质量浓度/(mg·L−1)
    K+Na+Ca2+Mg2+ClHCO3 SO4 2−
    五阳8.5430.580 04 117.112.60462.396.712.100434.631185.1666.200
    余吾8.4110.501 03 071.817.78850.2450.5132.830942.04630.9634.270
    常村8.5970.158 01 119.814.33393.754.621.712279.35430.269.180
    李村8.9540.188 11 340.116.59290.953.801.430349.97535.8319.604
    高河8.7100.291 82 071.011.24232.514.981.930298.65573.159.029
    平均8.6420.344 02 344.014.51445.9714.128.000460.93671.0731.441
    下载: 导出CSV
  • [1] 李洋冰,曾磊,胡维强,等. 保德地区煤层气地球化学特征及成因探讨[J]. 煤田地质与勘探,2021,49(2):133−141.. doi: 10.3969/j.issn.1001-1986.2021.02.017

    LI Yangbing,ZENG Lei,HU Weiqiang,et al. Geochemical characteristics and genesis of coalbed methane in Baode area[J]. Coal Geology & Exploration,2021,49(2):133−141.. doi: 10.3969/j.issn.1001-1986.2021.02.017
    [2] 李忠城,吴建光,王建中,等. 沁水盆地南部15号煤层和顶板K2灰岩水文地球化学演化特征[J]. 煤田地质与勘探,2020,48(3):75−80.. doi: 10.3969/j.issn.1001-1986.2020.03.011

    LI Zhongcheng,WU Jianguang,WANG Jianzhong,et al. Hydrogeochemical evolution of No.15 coal seam and limestone K2 in southern Qinshui Basin[J]. Coal Geology & Exploration,2020,48(3):75−80.. doi: 10.3969/j.issn.1001-1986.2020.03.011
    [3] 杨兆彪,吴丛丛,朱杰平,等. 中国煤层气井产出水地球化学研究进展[J]. 煤炭科学技术,2019,47(1):110−117.

    YANG Zhaobiao,WU Congcong,ZHU Jieping,et al. Research progress on produced water geochemical from CBM wells in China[J]. Coal Science and Technology,2019,47(1):110−117.
    [4] 于振锋,郝春生,杨昌永,等. 阳泉矿区寺家庄井田太原组煤层气地球化学特征及成因[J]. 煤田地质与勘探,2019,47(3):91−96.. doi: 10.3969/j.issn.1001-1986.2019.03.015

    YU Zhenfeng,HAO Chunsheng,YANG Changyong,et al. Genesis and geochemical characteristics of coalbed methane from Taiyuan Formation in Sijiazhuang mine field of Yangquan mining area[J]. Coal Geology & Exploration,2019,47(3):91−96.. doi: 10.3969/j.issn.1001-1986.2019.03.015
    [5] 朱卫平,唐书恒,吕建伟,等. 枣园区块煤层气井产出水化学特征及动态变化规律[J]. 煤田地质与勘探,2015,43(1):72−75.. doi: 10.3969/j.issn.1001-1986.2015.01.015

    ZHU Weiping,TANG Shuheng,LYU Jianwei,et al. The characteristics and dynamic changes of produced water from coalbed methane wells in Zaoyuan block[J]. Coal Geology & Exploration,2015,43(1):72−75.. doi: 10.3969/j.issn.1001-1986.2015.01.015
    [6] 常园,董琪. 地下水与煤层气相互关系研究进展[J]. 中外能源,2017,22(9):79−84.

    CHANG Yuan,DONG Qi. Research progress on relationship between groundwater and coalbed methane[J]. Sino-Global Energy,2017,22(9):79−84.
    [7] 梁雄兵,程胜高,宋立军. 煤层气勘探开发中的水污染分析及防治对策[J]. 环境科学与技术,2006(1):50−51.. doi: 10.3969/j.issn.1003-6504.2006.01.021

    LIANG Xiongbing,CHENG Shenggao,SONG Lijun. Water pollution and control in CBM exploration and development[J]. Environmental Science and Technology,2006(1):50−51.. doi: 10.3969/j.issn.1003-6504.2006.01.021
    [8] 张松航,唐书恒,李忠城,等. 煤层气井产出水化学特征及变化规律:以沁水盆地柿庄南区块为例[J]. 中国矿业大学学报,2015,44(2):292−299.

    ZHANG Songhang,TANG Shuheng,LI Zhongcheng,et al. The hydrochemical characteristics and ion changes of the coproduced water:Taking Shizhuangnan Block,south of the Qinshui Basin as an example[J]. Journal of China University of Mining & Technology,2015,44(2):292−299.
    [9] 唐书恒, 朱卫平, 李忠城, 等. 柳林区块煤层气井产出水特征及动态变化规律[C]//2011年煤层气学术研讨会论文集, 厦门, 2011.
    [10] 菅笑飞,唐书恒,单帅强,等. 沁水盆地潘庄区煤层气井产出水水质分析[J]. 科技视界,2012(24):49−52.

    JIAN Xiaofei,TANG Shuheng,SHAN Shuaiqiang,et al. Quality analysis of water produced from CBM wells of Panzhuang District in Qinshui Basin[J]. Science & Technology Vision,2012(24):49−52.
    [11] 吴丛丛,杨兆彪,秦勇,等. 贵州松河及织金煤层气产出水的地球化学对比及其地质意义[J]. 煤炭学报,2018,43(4):1058−1064.

    WU Congcong,YANG Zhaobiao,QIN Yong,et al. Geochemical comparison and its geological significance of CBM produced water in the Songhe and Zhijin blocks[J]. Journal of China Coal Society,2018,43(4):1058−1064.
    [12] 郭晨, 秦勇, 王生全, 等. 基于煤层气合采井产出水微量元素动态的层间干扰判识: 以黔西比德—三塘盆地上二叠统为例[C]//中国煤炭学会瓦斯地质专业委员会学术年会论文集, 深圳, 2019.
    [13] 焦雯,唐书恒,张松航,等. 煤层气井产出水离子及同位素演化特征研究[J]. 煤炭科学技术,2019,47(12):168−176.

    JIAO Wen,TANG Shuheng,ZHANG Songhang,et al. Study on evolution characteristics of water ions and isotopes produced by coalbed methane wells[J]. Coal Science and Technology,2019,47(12):168−176.
    [14] 时伟,唐书恒,李忠城,等. 沁水盆地南部山西组煤储层产出水氢氧同位素特征[J]. 煤田地质与勘探,2017,45(2):62−68.. doi: 10.3969/j.issn.1001-1986.2017.02.011

    SHI Wei,TANG Shuheng,LI Zhongcheng,et al. Hydrogen-oxygen isotope characteristics of produced water from coal reservoir of Shanxi Formation in Qinshui Basin[J]. Coal Geology & Exploration,2017,45(2):62−68.. doi: 10.3969/j.issn.1001-1986.2017.02.011
    [15] 刘超,冯国瑞,曾凡桂. 沁水盆地南部潘庄区块废气矿井煤层气地球化学特征及成因[J]. 煤田地质与勘探,2019,47(6):67−72.

    LIU Chao,FENG Guorui,ZENG Fangui. Origin and geochemical characteristics of coalbed methane in abandoned coal mines,Panzhuang block,southern Qinshui Basin[J]. Coal Geology & Exploration,2019,47(6):67−72.
    [16] 杨雯. 山西地块太原组含煤地层综合研究及石炭−二叠系界线划分[D]. 北京: 中国矿业大学(北京), 2018.

    YANG Wen. Comprehensive study on coal bearing strata of Taiyuan Formation in Shanxi block and boundary division of Carboniferous-Permian[D]. Beijing: China University of Mining & Technology(Beijing), 2018.
    [17] 曹运兴,柴学周,刘同吉,等. 潞安矿区山西组3号煤储层低压特征及控制因素研究[J]. 天然气地球科学,2016,27(11):2077−2085.

    CAO Yunxing,CHAI Xuezhou,LIU Tongji,et al. A research on low reservoir pressure of coal 3 of Shanxi Formation in Lu’an mining area, Qinshui Basin[J]. Natural Gas Geoscience,2016,27(11):2077−2085.
    [18] 白海波,缪协兴,冯梅梅. 潞安矿区新构造及其控水作用的研究[J]. 采矿与安全工程学报,2006,23(4):383−388.. doi: 10.3969/j.issn.1673-3363.2006.04.002

    BAI Haibo,MIAO Xiexing,FENG Meimei. Research on the neotectonics and water controlling effect in Lu’an coal mine[J]. Journal of Mining & Safety Engineering,2006,23(4):383−388.. doi: 10.3969/j.issn.1673-3363.2006.04.002
    [19] 李贵娟. 定边县周台子地区地下水水化学演化规律研究[D]. 西安: 西北大学, 2010.

    LI Guijuan. Study on the evolution of chemical composition of the water in the Zhoutaizi area in Dingbian County[D]. Xi’an: Northwest University, 2010.
    [20] 黄望望,姜春露,陈星,等. 淮南新集矿区主要充水含水层水化学特征及成因[J]. 地球与环境,2020,48(4):432−442.

    HUANG Wangwang,JIANG Chunlu,CHEN Xing,et al. Chemical characteristics and genesis of deep groundwater in the Xinji Mining Area[J]. Earth and Environment,2020,48(4):432−442.
    [21] 连会青,刘德民,尹尚先. 水化学综合识别模式在矿井水源判别中的应用[J]. 煤炭工程,2012(8):107−109.. doi: 10.3969/j.issn.1671-0959.2012.08.039

    LIAN Huiqing,LIU Demin,YIN Shangxian. Application of hydrochemistry comprehensive identification mode to distinguish mine water resources[J]. Coal Engineering,2012(8):107−109.. doi: 10.3969/j.issn.1671-0959.2012.08.039
    [22] 张晓敏. 沁水盆地南部煤层气产出水化学特征及动力场分析[D]. 焦作: 河南理工大学, 2021.

    ZHANG Xiaomin. Chemical characteristics and dynamic field analysis of CBM produced water in the southern Qinshui Basin[D]. Jiaozuo: Henan Polytechnic University, 2012.
    [23] 韩积斌. 尕斯库勒盐湖盆地水文系统中高浓度铀的迁移富集行为[D]. 武汉: 中国地质大学, 2018.

    HAN Jibin. Migration and enrichment of high concentration uranium in the hydrological system of Gas Hure Salt Lake, Qaidam Basin[D]. Wuhan: China University of Geosciences, 2018.
    [24] 覃小群,蒋忠诚,张连凯,等. 珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J]. 地质通报,2015,34(9):1749−1757.. doi: 10.3969/j.issn.1671-2552.2015.09.016

    QIN Xiaoqun,JIANG Zhongcheng,ZHANG Liankai,et al. The difference of the weathering rate between carbonate rocks and silicate rocks and its effects on the atmospheric CO2 consumption in the Pearl River Basin[J]. Geological Bulletin of China,2015,34(9):1749−1757.. doi: 10.3969/j.issn.1671-2552.2015.09.016
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  53
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-09-22
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-02-14

目录

    /

    返回文章
    返回