油气井雷达成像测井仪改进及试验

赵永刚

赵永刚. 油气井雷达成像测井仪改进及试验[J]. 煤田地质与勘探, 2021, 49(5): 253-259. DOI: 10.3969/j.issn.1001-1986.2021.05.028
引用本文: 赵永刚. 油气井雷达成像测井仪改进及试验[J]. 煤田地质与勘探, 2021, 49(5): 253-259. DOI: 10.3969/j.issn.1001-1986.2021.05.028
ZHAO Yonggang. Improvement and test of radar imaging logging tool for oil and gas wells[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 253-259. DOI: 10.3969/j.issn.1001-1986.2021.05.028
Citation: ZHAO Yonggang. Improvement and test of radar imaging logging tool for oil and gas wells[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 253-259. DOI: 10.3969/j.issn.1001-1986.2021.05.028

 

油气井雷达成像测井仪改进及试验

基金项目: 

国家高技术研究发展计划项目(863计划) 2013AA064603

中石化科技项目 JPE19004

详细信息
    作者简介:

    赵永刚,男,1968年生,甘肃平凉人,博士,高级工程师,从事科研管理及测井技术研究工作. E-mail:zhao.y.g@163.com

  • 中图分类号: P631

Improvement and test of radar imaging logging tool for oil and gas wells

  • 摘要: 传统的测井仪器探测深度基本在3 m以内, 大多也没有方位分辨能力, 无法实现油气井周围较大范围地层结构与构造的成像, 故不能解决隐蔽构造与油气储层的探测问题。针对上述问题, 将地表地质雷达成像技术移植到测井中, 研发了雷达成像测井仪。为提高雷达成像测井仪探测深度、方位分辨率和下井深度, 采用纳秒脉冲源与定向接收天线对井周地层进行探测和成像, 在增大探测距离的同时, 兼顾了分辨率; 采用磁环和光耦对脉冲板做隔离, 有效地压制了噪声; 通过在电路外增加保温瓶和优选耐高温元器件提高了仪器的耐高温性能; 最后利用模型井对仪器进行了测试和标定, 并在3口油井中进行了现场应用。改进后的雷达成像测井仪下井深度可达6 000 m, 最大探测深度可达12 m, 能够对井周5 m以外孔洞、裂缝进行定位和成像, 大大地拓宽了测井技术的横向预测能力。测试与应用结果表明:该仪器能够耐受油井下的高温高压环境, 探测深度大且分辨率高, 对钻孔周围地层界面、裂缝和孔洞构造成像效果较好。
    Abstract: The detection depth of traditional logging tools is basically less than 3 m, and without azimuth resolution, the formation structure in larger area around wells cannot be imaged. Therefore the problems arising in the detection of subtle structure and oil and gas reservoirs can not be solved. In response to such problems, radar imaging logging tool is developed by applying ground penetrating radar imaging technology to logging. In order to improve the detection depth, azimuth resolution and downhole depth of the tool, a nanosecond pulse source and directional receiving antennae are used to detect and image the formation around the well, increasing the detection distance while improving the resolution. Magnetic rings and optocouplers are used to isolate the pulse plate, which effectively suppresses the noise. The high temperature resistance of the tool is improved by adding thermos and selecting high temperature resistant components outside the circuit. Finally, the tool is tested and calibrated by using model wells, and has been applied in three oil wells. The downhole depth of the improved radar imaging logging tool can reach 6 000 m, and its maximum transverse detection depth can reach 12 m. It can locate and image holes and fractures 5 m away from the wellbore, significantly improving the lateral prediction ability of logging technology. The testing results show that as the tool can withstand high temperature and high pressure environment of oil wells with a large detection depth and high resolution, and it has a good imaging effect on the formation interface, fractures and pore structure around the borehole.
  • 致谢: 感谢雷达成像测井仪器研发团队(冉利民、李功强、赵青、刘四新等)的辛勤工作,感谢审稿人和编辑提出的宝贵意见和建议。
  • 图  1   雷达成像测井工作原理

    Fig.  1   Working principle of radar imaging logging

    图  2   雷达成像测井系统结构

    Fig.  2   Structural diagram of the radar imaging logging system

    图  3   雷达成像测井仪样机结构与实物

    Fig.  3   Radar imaging logging tool and its prototype structure

    图  4   雷达成像测井数据处理解释软件界面

    Fig.  4   Software interface for data processing and interpretation of radar imaging logging

    图  5   雷达成像测井仪器系统在模型井的测试结果及模型井的结构

    Fig.  5   Test results of the radar imaging logging tool system in model wells and the structure of model wells

    图  6   井A常规测井、雷达成像测井与电成像测井对岩性的识别

    Fig.  6   Lithology identification by conventional well logging, radar imaging logging and resistivity imaging logging in well A

    图  7   井B雷达成像测井与常规测井地层划分对比

    Fig.  7   Stratigraphic division by conventional well logging and radar imaging logging in well B

    图  8   井C中裂缝在雷达成像测井与电成像测井上的显示

    Fig.  8   Results comparison of radar imaging logging and resistivity imaging logging for fracture detection in well C

    表  1   改进后的雷达成像测井仪器系统与国外产品性能比较

    Table  1   Performance comparison between the improved radar imaging logging system and its foreign counterparts

    国家 公司名称 雷达系统 通信方式 天线类型 中心频率/MHz 工作深度/m 径向探测距离/m 工作温度/ ℃ 仪器直径/ mm 应用领域
    中国 中石化华北石油工程有限公司 雷达成像测井系统 电缆 定向 200 6 000 5~12 –30~120 108 石油/天然气储层勘探
    瑞典 MALA RAMAC 光缆 全向 100/250 2 500 10~100 –10~50 48 水文地质调查/核废料选址
    定向 60 1 000 200~300 48
    荷兰 T & A Survey TISA 2D BHR 电缆 全向 200 30.5 5~15 –10~40 60 未爆炸物探测
    TISA 3D BHR 定向 100 150 0~60 159 油气藏描述地质调查
    德国 DMT Directional Adaptive BHR 电缆 定向 50/100/250 1 000 100 –75 85 盐矿边界/地质结构勘探
    美国 USGS DBOR 光缆 定向 100 < 300 不详 不详 69.85 水文地质调查
    加拿大 Sensors & Software pulseEKKO PRO 光缆 全向 50/100/200 不详 不详 不详 30 环境监测
    澳大利亚 GeoMole GeoMole BHR System 串口蓝牙 全向 60 1 000~ 3 000 3~40 不详 32~42 采矿/隧道探测
    40 2~40 32~42
    南非 CSIR Aardwolf BR40 光缆 定向 40 1 000 30 –70 33 金矿
    下载: 导出CSV
  • [1] 赵卫平, 潘和平, 李清松, 等. 井中雷达应用进展[J]. 工程地球物理学报, 2005, 2(4): 297-303. DOI: 10.3969/j.issn.1672-7940.2005.04.009

    ZHAO Weiping, PAN Heping, LI Qingsong, et al. The development of the application of radar in the well[J]. Chinese Journal of Engineering Geophysics, 2005, 2(4): 297-303. DOI: 10.3969/j.issn.1672-7940.2005.04.009

    [2]

    BERES M J, HAENI F P. Application of ground-penetrating- radar methods in hydrogeologic studies[J]. Ground Water, 1991, 29(3): 375-386. DOI: 10.1111/j.1745-6584.1991.tb00528.x

    [3]

    CARDIMONA S J, CLEMENT W P, KADINSKY C K. Seismic reflection and ground-penetrating radar imaging of a shallow aquifer[J]. Geophysics, 1998, 63(4): 1310-1317. DOI: 10.1190/1.1444432

    [4] 赵文轲, 陈国顺, 田钢, 等. 探地雷达属性技术进展[J]. 地球物理学进展, 2012, 27(3): 1262-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203055.htm

    ZHAO Wenke, CHEN Guoshun, TIAN Gang, et al. Progress in ground penetrating radar attribute technology[J]. Progress in Geophysics, 2012, 27(3): 1262-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203055.htm

    [5] 程丹丹, 施兴华, 王成浩. 一种基于车载探地雷达阵列的地雷实时检测方法[J]. 地球物理学进展, 2019, 34(6): 2414-2420. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906035.htm

    CHENG Dandan, SHI Xinghua, WANG Chenghao. Real-time method for landmine detection using vehicle array GPR[J]. Progress in Geophysics, 2019, 34(6): 2414-2420. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906035.htm

    [6] 郭士礼, 邓健, 李伟伟, 等. 探地雷达多剖面联合解释方法及应用[J]. 地球物理学进展, 2019, 34(5): 2022-2029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201905040.htm

    GUO Shili, DENG Jian, LI Weiwei, et al. Ground penetrating radar multi-profile integrated interpretation method and application[J]. Progress in Geophysics, 2019, 34(5): 2022-2029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201905040.htm

    [7] 吴秋霜, 王齐仁, 皮海康. 水泥混凝土路面脱空的探地雷达图像特征分析[J]. 煤田地质与勘探, 2018, 46(4): 181-185. DOI: 10.3969/j.issn.1001-1986.2018.04.029

    WU Qiushuang, WANG Qiren, PI Haikang. Analysis on the image features of ground penetrating radar for cavity of concrete pavement[J]. Coal Geology & Exploration, 2018, 46(4): 181-185. DOI: 10.3969/j.issn.1001-1986.2018.04.029

    [8] 李俊杰, 张红纲, 何建设, 等. TSP探测精度分析及其在过江隧洞超前预报中的应用[J]. 煤田地质与勘探, 2019, 47(4): 193-200. DOI: 10.3969/j.issn.1001-1986.2019.04.029

    LI Junjie, ZHANG Honggang, HE Jianshe, et al. Detection accuracy analysis of TSP and its application in a river-crossing tunnel construction[J]. Coal Geology & Exploration, 2019, 47(4): 193-200. DOI: 10.3969/j.issn.1001-1986.2019.04.029

    [9] 陈建胜, 陈从新. 钻孔雷达技术的发展和现状[J]. 地球物理学进展, 2008, 23(5): 1634-1640. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200805043.htm

    CHEN Jiansheng, CHEN Congxin. The review of borehole radar technology[J]. Progress in Geophysics, 2008, 23(5): 1634-1640. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200805043.htm

    [10] 李华, 鲁光银, 何现启, 等. 探地雷达的发展历程及其前景探讨[J]. 地球物理学进展, 2010, 25(4): 1492-1520. DOI: 10.3969/j.issn.1004-2903.2010.04.043

    LI Hua, LU Guangyin, HE Xianqi, et al. The progress of the GPR and discussion on its future development[J]. Progress in Geophysics, 2010, 25(4): 1492-1520. DOI: 10.3969/j.issn.1004-2903.2010.04.043

    [11]

    VAN WAARD R. 3D borehole radar technology development aims to transform drilling applications[J]. First Break, 2001, 19(9): 491-493. http://www.ta-survey.nl/pdf/First_Break-3D_Borehole_Radar_technology.pdf

    [12] 刘四新, 冉利民, 赵永刚, 等. 电磁波测井方法原理及应用[M]. 北京: 科学出版社: 2015.

    LIU Sixin, RAN Limin, ZHAO Yonggang, et al. Principle and application of electromagnetic wave logging method[M]. Beijing: Science Press, 2015.

    [13]

    MA Chunguang, ZHAO Qing, CHANG Xinghao, et al. Field test of directional borehole radar in a hydrocarbon production well[C]//15th International Conference on Ground Penetrating Radar GPR, Brussels, Belgium. 2014: 334-338.

    [14] 刘四新, 佐藤源之. 多频电磁波测井的数值模拟和实验研究[J]. 测井技术, 2003, 27(4): 278-282. DOI: 10.3969/j.issn.1004-1338.2003.04.005

    LIU Sixin, MOTOYUKI Sato. Numerical and experimental study on multi-frequency electromagnetic well logging[J]. Well logging technology, 2003, 27(4): 278-282. DOI: 10.3969/j.issn.1004-1338.2003.04.005

    [15]

    KINGSLEY S, QUEGAN S. Understanding radar systems[M]. New York: Mc Graw-Hill, 1992.

    [16]

    RANNEY K, STANTON B, NGUYEN L, et al. Borehole radar performance characteristics and applications for underground change detection[C]//IEEE: Radar, 2006 IEEE Conference on. 2006: 643-649. DOI: 10.1109/RADAR.2006.1631868

    [17] 马春光. 瞬态脉冲雷达成像测井及实验研究[D]. 成都: 电子科技大学, 2015.

    MA Chunguang. Transient pulse radar well-logging and experimental research[D]. Chengdu: University of Electronic Science and Technology of China, 2015.

    [18]

    MA Chunguang, ZHAO Qing, HUO Jianjian, et al. Single borehole radar for well logging in a limestone formation: experiments and simulations[J]. Journal of Environmental and Engineering Geophysics, 2016, 21(4): 201-213. DOI: 10.2113/JEEG21.4.201

    [19]

    LI Junjie, YAN Jiabin, HUANG Xiangyu. Precision of mesh free methods and application to forward modeling of two-dimensional electromagnetic sources[J]. Applied Geophysics, 2015, 12(4): 503-515. DOI: 10.1007/s11770-015-0511-3

  • 期刊类型引用(2)

    1. 李涛涛,许献磊,徐海龙,欧阳兵,王鹏杰. 定向钻孔雷达天线探测平衡分析与配重优化设计. 煤田地质与勘探. 2023(06): 175-184 . 本站查看
    2. 胡铭奇,刘四新,师伟,冉利民,李健伟,杜娟. 雷达测井数据处理方法及其应用效果. 世界地质. 2023(04): 724-730 . 百度学术

    其他类型引用(2)

图(8)  /  表(1)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  19
  • PDF下载量:  21
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-10-13
  • 修回日期:  2021-05-09
  • 网络出版日期:  2021-11-05
  • 发布日期:  2021-10-24

目录

    /

    返回文章
    返回