Application of in-seam wave technology in geological anomaly detection of Yangquan Mining Area
-
摘要: 通过回顾近几年槽波地震探测技术在阳泉矿区的发展历程及应用情况,总结阳泉矿区槽波发育特征,详细分析阳泉矿区发育的断层、陷落柱等地质异常体的槽波探测效果,并对各区域矿井槽波特征进行总结,针对发育不同构造的矿井,分析总结相应的槽波传播规律和解释方法。结果表明:槽波探测工作面在阳泉矿区达到200多个,在15号煤层探测应用最多,达到58个工作面,主要解决断层、陷落柱、挠曲、顶底板破碎带等地质异常体的探测问题,探测结果总体准确率在82.2 %以上;阳泉矿区槽波发育特征:3~6 m煤厚槽波发育中等至良好,煤厚小于2 m的晋南地区,槽波发育一般;槽波Airy相速度960~1 000 m/s,不同地区速度相差不大;Airy相频率与煤厚相关,煤层越厚,Airy相频率越低;相同煤层中,槽波Airy相速度与频率相差不大;根据回采验证情况,不同煤层及地区,探测效果差别较大;对槽波探测不同地质异常体的问题,从数据采集、处理与综合解释上给出了建议;今后需进一步加强槽波对构造煤、瓦斯富集区、应力异常等地质灾害的探测研究,深化槽波在地质保障领域的应用范围,为矿井安全生产及工作面透明化提供可靠的地质保障。Abstract: By reviewing the application history of in-seam wave seismic detection technology in Yangquan Mining Area in recent years, this paper summarizes the characteristics of in-seam wave in Yangquan Mining Area, and analyzes the in-seam wave detection effect of geological anomalies such as faults and collapse columns in Yangquan Mining Area. The characteristics of in-seam waves in various regions are summarized, and the propagation patterns and the interpretation methods of in-seam wave in the regions are proposed. The results show that there are more than 200 working faces adopted in-seam seismic detection in Yangquan Mining Area, among which 58 working faces are used in No.15 coal seam, which mainly solves the detection problems of geological abnormal bodies such as faults, collapse columns, deflection, roof and floor breakage, and the overall accuracy rate of detection results is more than 82.2%. The characteristics of in-seam waves in Yangquan Mining Area are as follows. In-seam wave development is moderate to good in coal seams of 3-6 m thickness. In the south of Shanxi where the coal thickness is less than 2 m, in-seam wave is generally developed. The Airy velocity of in-seam waves are 960-1 000 m/s, and there is little difference in different regions. The Airy frequency is related to coal thickness, and the thicker the coal seam, the lower the Airy frequency. In the same coal seams, differences of velocity and frequency is not significant. According to the results of mining verification, the effect of detection from different coal seams and regions are quite different. For detection of geological anomalies by in-seam waves, suggestions are given from data collection, processing and comprehensive interpretation. The detection methods need be strengthened in the future to detect more geological disasters such as structural coal, gas enrichment areas, and stress anomalies. With extension of its application, in-seam wave technology will provides reliable geological protection for safe production and promote transparency for working faces of coal mines.
-
-
表 1 阳泉矿区煤层槽波发育特征
Table 1 Development characteristics of in-seam wave in Yangquan Mining Area
区域 煤层(不同矿井) 煤厚/m Airy相频率/Hz Airy相速度/(m·s–1) 顶板岩性 底板岩性 构造复杂程度 地质异常体 槽波发育 阳泉市内 15 6 110 990 黑色泥岩 炭质泥岩 一般 断层、陷落柱、挠曲 良好 8、15 5 170 1 000 砂质泥岩 泥岩 简单 断层、陷落柱 良好 15 6 120 1 000 砂质泥岩 炭质泥岩 简单 断层、陷落柱、挠曲 良好 15 5 180 970 泥岩 泥岩 一般 断层、陷落柱 良好 盂县 15 4 220 970 泥岩 泥岩 复杂 断层 中等 15 4.6 150 980 砂质泥岩 砂质泥岩 复杂 断层、陷落柱 中等 15 6 120 980 砂质泥岩 砂质泥岩 复杂 断层 中等 15 5 180 960 砂质泥岩 砂质泥岩 复杂 断层、陷落柱 中等 寿阳 3、9 3 300 970 砂质泥岩 砂质泥岩 复杂 断层、陷落柱 中等 8、15 2.5 250 950 3、9 2 330 990 平定 15 5 180 960 泥岩 泥岩 一般 断层、陷落柱 良好 15 8 100 990 砂质泥岩 砂质泥岩 和顺 15 6 120 990 砂质泥岩 泥岩 一般 断层、陷落柱 中等 15 6 110 980 昔阳 15 5 130 980 砂质泥岩 炭质泥岩 复杂 断层、陷落柱、挠曲 中等 清徐 2、5 2 350 960 泥岩 泥岩 极复杂 断层、陷落柱 较差 晋北 13 14 80 960 泥质砂岩 泥质砂岩 复杂 断层 良好 2 4 150 990 断层 2 5 130 980 断层、陷落柱 晋南 2、3 2 300 970 炭质泥岩 炭质泥岩 复杂 断层 一般 3 2 290 990 泥岩 泥岩 2 2 290 980 泥岩 泥岩 2 2 300 960 黑色泥岩 黑色泥岩 9 2 300 980 黑色泥岩 黑色泥岩 2 2 290 980 泥岩 泥岩 表 2 阳泉矿区槽波验证情况
Table 2 In-seam wave verification in Yangquan Mining Area
区域 地质异常体解释数量 准确率/% 区域 地质异常体解释数量 准确率/% 断层 陷落柱 挠曲 其他 断层 陷落柱 挠曲 其他 阳泉市内 3 9 3 88.2 和顺 2 1 3 80.0 2 2 1 83.3 4 5 80.7 7 13 22 97.6 昔阳 3 9 2 1 89.8 5 3 4 80.0 清徐 6 10 3 79.0 盂县 1 3 1 83.3 晋北 10 86.5 1 6 2 90.0 1 88.1 2 1 1 80.0 9 85.3 2 2 4 72.7 晋南 4 3 73.4 寿阳 5 16 80.7 6 5 72.7 7 11 1 78.9 14 80.7 2 20 1 85.0 7 78.5 平定 1 17 1 82.4 1 2 79.6 29 12 85.5 3 75.0 合计 104 164 20 47 — -
[1] EVISON F F. A coal seam as a guide for seismic energy[J]. Nature, 1955, 176(4495): 1224-1225. DOI: 10.1038/1761224a0
[2] KREY T C. Channel waves as a tool of applied geophysics in coal mining[J]. Geophysics, 1963, 28(5): 701-714. DOI: 10.1190/1.1439258
[3] 储绍良. 矿井物探应用[M]. 北京: 煤炭工业出版社, 1995. CHU Shaoliang. Applications of coal mining geophysics[M]. Beijing: China Coal Industry Publishing House, 1995.
[4] 韩德品, 赵镨, 李丹. 矿井物探技术应用现状与发展展望[J]. 地球物理学进展, 2009, 24(5): 1839-1849. DOI: 10.3969/j.issn.1004-2903.2009.05.039 HAN Depin, ZHAO Pu, LI Dan. Application status and development prospects of mine geophysical exploration technology[J]. Progress in Geophysics, 2009, 24(5): 1839-1849. DOI: 10.3969/j.issn.1004-2903.2009.05.039
[5] 王秀东, 陈清静, 林羽. 三维地震勘探技术在煤田开发中的应用及发展[C]//山东省地球物理学会, 山东省地球物理学会, 中国地球物理学会. 山东地球物理六十年. 2009: 391-397. WANG Xiudong, CHEN Qingjing, LIN Yu. Application and development of 3D seismic exploration technology in coal field development[C]//Shandong Geophysical Society, Shandong Geophysical Society, Chinese Geophysical Society: Sixty Years of Shandong Geophysics. 2009: 391-397.
[6] 张鹏. 中国煤炭矿井物探技术现状及展望[J]. 工矿自动化, 2017, 43(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201703005.htm ZHANG Peng. Status and prospect of coal mine geophysical exploration technology in China[J]. Industry and Mine Automation, 2017, 43(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201703005.htm
[7] 程建远. 煤矿井下槽波透视技术与装备[R]. 西安: 中煤科工集团西安研究院有限公司, 2014-10-24. CHENG Jianyuan. Technology and equipment of channel wave perspective in underground coal mine[R]. Xi'an: Xi'an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., 2014-10-24.
[8] 王保利, 金丹. 矿井槽波地震数据处理系统GeoCoal软件开发与应用[J]. 煤田地质与勘探, 2019, 47(1): 174-180. DOI: 10.3969/j.issn.1001-1986.2019.01.027 WANG Baoli, JIN Dan. Development and application of GeoCoal for in-seam seismic data processing[J]. Coal Geology & Exploration, 2019, 47(1): 174-180. DOI: 10.3969/j.issn.1001-1986.2019.01.027
[9] 郭银景, 巨媛媛, 范晓静, 等. 槽波地震勘探研究进展[J]. 煤田地质与勘探, 2020, 48(2): 216-227. DOI: 10.3969/j.issn.1001-1986.2020.02.032 GUO Yinjing, JU Yuanyuan, FAN Xiaojing, et al. Progress in research of in-seam seismic exploration[J]. Coal Geology & Exploration, 2020, 48(2): 216-227. DOI: 10.3969/j.issn.1001-1986.2020.02.032
[10] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(8): 2277-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908002.htm YUAN Liang, ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society, 2019, 44(8): 2277-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908002.htm
[11] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报, 2020, 45(7): 2331-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007002.htm PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society, 2020, 45(7): 2331-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007002.htm
[12] 程建远, 朱梦博, 王云宏, 等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报, 2019, 44(8): 2285-2295. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908003.htm CHENG Jianyuan, ZHU Mengbo, WANG Yunhong, et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society, 2019, 44(8): 2285-2295. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908003.htm
[13] 王季, 李建政, 吴海, 等. 透射槽波能量衰减系数成像与陷落柱探测[J]. 煤炭科学技术, 2015, 43(1): 108-111. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501029.htm WANG Ji, LI Jianzheng, WU Hai, et al. Tomography of transmission in-seam wave attenuation coefficient and detection of collapse columns[J]. Coal Science and Technology, 2015, 43(1): 108-111. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501029.htm
[14] WANG Ji, LU Wenkai, CHENG Jianyuan. Channel wave tomography for detecting inhomogeneties in coal seam: A real dataset example[C]//75th EAGE Conference & Exhibition incorporating SPE EUROPEC, 2013.
[15] LU Wenkai, YIN Fangfang. Adaptive algebraic reconstruction technique[J]. Medical Physics, 2004, 31(12): 3222-3230. DOI: 10.1118/1.1812606
[16] HU Yanrong, MCMECHAN G A. Imaging mining hazards within coalbeds using prestack wave equation migration of in-seam seismic survey data: A feasibility study with synthetic data[J]. Journal of Applied Geophysics, 2007, 63: 24-34. DOI: 10.1016/j.jappgeo.2007.03.002
[17] 王季. 反射槽波探测采空巷道的实验与方法[J]. 煤炭学报, 2015, 40(8): 1879-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508025.htm WANG Ji. Experiment and method of void roadway detection using reflected in-seam wave[J]. Journal of China Coal Society, 2015, 40(8): 1879-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508025.htm
[18] 河北省煤田地质局第二地质队. 阳泉煤业(集团)股份有限公司二矿生产矿井地质报告[R]. 阳泉: 阳泉煤业(集团)股份有限公司二矿, 2018. The Second Geological Team of Hebei Bureau of Coal Geology. Geological report of the second mine production mine of Yangquan Coal Industry(Group) Co., Ltd. [R]. Yangquan: The Second Mine of Yangquan Coal Industry(Group) Co., Ltd., 2018.
[19] 山西地宝能源有限公司. 山西平舒煤业有限公司温家庄矿生产地质报告[R]. 寿阳: 山西平舒煤业有限公司, 2017. Shanxi Dibao Energy Co, Ltd. Production geological report of Shanxi Pingshu Coal Industry Co., Ltd. Wenjiazhuang Mine[R]. Shouyang: Shanxi Pingshu Coal Industry Co., Ltd., 2017.
[20] 山西省煤炭地质148勘查院. 山西阳煤集团南岭煤业有限公司建井地质报告[R]. 清徐: 山西阳煤集团南岭煤业有限公司, 2014. Shanxi Coal Geology 148 Exploration Institute. Well construction geological report of Shanxi Yangmei Group Nanling Coal Industry Co., Ltd. [R]. Qingxu: Shanxi Yangmei Group Nanling Coal Industry Co., Ltd., 2014.
[21] 山西潞安中煤资源勘查开发有限公司. 阳泉煤业集团翼城山凹煤业有限公司生产地质报告[R]. 翼城: 阳泉煤业集团翼城山凹煤业有限公司, 2018. Shanxi Lu'an China Coal Resources Exploration and Development Co., Ltd. Produces geological report of Yangquan Coal Industry Group Yicheng Shan'ao Coal Industry Co., Ltd. [R]. Yicheng: Yangquan Coal Industry Group Yicheng Shan'ao Coal Industry Co., Ltd., 2018.
[22] 刘最亮, 冯梅梅. 阳泉矿区新景矿构造煤发育规律的数值模拟[J]. 煤田地质与勘探, 2018, 46(4): 35-43. DOI: 10.3969/j.issn.1001-1986.2018.04.006 LIU Zuiliang, FENG Meimei. Numerical simulation study on the development patterns of tectonically deformed coal in Xinjing coal mine in Yangquan[J]. Coal Geology & Exploration, 2018, 46(4): 35-43. DOI: 10.3969/j.issn.1001-1986.2018.04.006
[23] 令狐建设, 闫志铭, 徐超. 阳泉矿区差异地质构造对煤体突出物性参数的影响[J]. 煤矿安全, 2020, 51(9): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202009005.htm LINGHU Jianshe, YAN Zhiming, XU Chao. Influence of different geological structures in Yangquan mining area on outburst-related physical parameters of coal[J]. Safety in Coal Mines, 2020, 51(9): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202009005.htm
[24] 苏晓云. 我国主要矿区典型煤层槽波赋存发育特征研究[J]. 煤炭工程, 2020, 52(10): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202010028.htm SU Xiaoyun. The occurrence and development characteristics of channel wave in main mining areas of China[J]. Coal Engineering, 2020, 52(10): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202010028.htm