孔—巷联合随采地震相关时差层析成像

王云宏, 王保利, 程建远, 崔伟雄, 金丹

王云宏, 王保利, 程建远, 崔伟雄, 金丹. 孔—巷联合随采地震相关时差层析成像[J]. 煤田地质与勘探, 2021, 49(3): 199-204. DOI: 10.3969/j.issn.1001-1986.2021.03.025
引用本文: 王云宏, 王保利, 程建远, 崔伟雄, 金丹. 孔—巷联合随采地震相关时差层析成像[J]. 煤田地质与勘探, 2021, 49(3): 199-204. DOI: 10.3969/j.issn.1001-1986.2021.03.025
WANG Yunhong, WANG Baoli, CHENG Jianyuan, CUI Weixiong, JIN Dan. Borehole-roadway seismic-while-mining tomography using correlation time difference[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 199-204. DOI: 10.3969/j.issn.1001-1986.2021.03.025
Citation: WANG Yunhong, WANG Baoli, CHENG Jianyuan, CUI Weixiong, JIN Dan. Borehole-roadway seismic-while-mining tomography using correlation time difference[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 199-204. DOI: 10.3969/j.issn.1001-1986.2021.03.025

 

孔—巷联合随采地震相关时差层析成像

基金项目: 

国家重点研发计划课题 2018YFC0807804

陕西省自然科学基础研究计划项目 2020JM-714

天地科技股份有限公司科技创新创业资金专项项目 2018-TD-QN054

详细信息
    作者简介:

    王云宏, 1985年生, 男, 云南保山人, 硕士, 副研究员, 从事地震资料数字信号处理方面的研究工作.E-mail: wangyunhong@cctegxian.com

  • 中图分类号: TD854.6

Borehole-roadway seismic-while-mining tomography using correlation time difference

  • 摘要: 煤矿井下回采工作面随采地震技术将采煤机作为震源,实现了动态精准、绿色智能探测的技术构想,可用于工作面内部静态地质异常体与开采动力地质灾害的超前探测。针对常规随采地震观测系统存在的成像盲区问题,提出孔–巷联合的随采地震观测系统设计方案,有效提高成像范围;基于地震干涉原理,采用频率域相关算法,对随采地震信号进行脉冲化处理,获得随采地震等效炮集;为解决随采地震CT层析成像中绝对走时难以获取的问题,提出直接利用相关时差进行CT层析成像的方法,求解过程中无需计算发震时刻,降低对初始速度的依赖。理论模型和实际资料测试结果表明:孔–巷联合观测系统有效扩大了成像范围;基于相关时差的随采地震层析成像方法可以对工作面内部进行速度成像,实现对静态地质异常体的探测;利用随采地震连续监测、动态成像的特点,还可实现对工作面内由于采动引起的应力集中区的实时动态监测,对工作面安全监测更有意义。
    Abstract: Using shearer as a source, seismic-while-mining(SWM) technology has realized dynamic, accurate and green intelligent detection in fully mechanized mining faces, and can be used to detect static geological anomaly and dynamic mining geological disasters within the work face. Conventional SWM observation system has the defect of blind area. To solve this problem, a new observation system with detectors installed in both roadway and within boreholes are proposed, which effectively improved the imaging range. Based on seismic interferometry principle, using frequency domain correlation algorithm, this paper turns the SWM signal to explosive source signal, and computes the equivalent shot sets. In SWM CT tomography, the absolute travel time is hard to obtain. therefore, a CT tomographic method that directly using correlation time difference was propose, so as to avoid calculating the exact time of seismic and reduce the dependence on the initial speed. The theoretical model and the actual data prove that using borehole-roadway approach, the imaging range has been effectively expanded. The SWM CT tomography based on correlation time difference can image velocity within work face, with static geological anomaly detected effectively. The continuous monitoring and dynamic imaging characteristic of SWM can also be used to dynamically monitor the stress concentration caused by mining in real time, which is more meaningful for working face mornitoring.
  • 图  1   观测系统与成像范围

    Fig.  1   The observation system and the imaging area

    图  2   随采地震信号脉冲化处理

    Fig.  2   Pulse processing of seismic-while-mining signal

    图  3   速度模型及观测系统

    Fig.  3   The velocity model and observation system

    图  4   互相关走时CT反演结果

    Fig.  4   The CT inversion results using correlation time

    图  5   随采地震观测系统

    Fig.  5   The observation system of seismic-while-mining

    图  6   矿井物探解释成果

    Fig.  6   Mine geophysical interpretation result

    图  7   随采地震原始记录

    Fig.  7   The original recording of seismic-while-mining

    图  8   随采地震的脉冲化记录

    Fig.  8   Pulse recording of seismic-while-mining

    图  9   随采地震成像结果

    (a)—(f)为每隔10刀反演结果

    Fig.  9   The imaging results of seismic-while-mining

  • [1]

    BUCHANAN D J, MASON I M, DAVIS R. The coal cutter as a seismic source in channel wave exploration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, 18(4): 318-320. http://ieeexplore.ieee.org/document/4157183/citations?tabFilter=patents

    [2]

    WESTMAN E C, HARAMY K Y, ROCK A D. Seismic tomography for longwall stress analysis[C]//In Proc 2nd North Am Rock Mech Symp, Montreal, Q C, 1996: 397-403.

    [3]

    WESTMAN E C, PETERSON S C, HEASLEY K A, et al. A correlation between seismic tomography, seismic events and support pressure[C]//In Proc 38th Rock Mech Symp, Washington DC, 2001: 319-326.

    [4]

    PETRONIO L, POLETTO F. Seismic-while-drilling by using tunnel boring machine noise[J]. Geophysics, 2002, 67(6): 1798-1809. DOI: 10.1190/1.1527080

    [5]

    LUO Xun, KING A, WERKEN VAN DE M. Sensing roof conditions ahead of a longwall mining using the shearer as a seismic source[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 17-20. http://ieeexplore.ieee.org/document/4779645/

    [6]

    LUO Xun, KING A, WERKEN VAN DE M. Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source: A feasibility study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3671-3678. DOI: 10.1109/TGRS.2009.2018445

    [7]

    KING A, LUO Xun. Methodology for tomographic imaging ahead of mining using the shearer as a seismic source[J]. Geophysics, 2009, 74(2): 1-8. http://adsabs.harvard.edu/abs/2009Geop...74....1K

    [8] 王保利. 随采地震数据处理软件开发与应用[J]. 煤田地质与勘探, 2019, 47(3): 29-34. DOI: 10.3969/j.issn.1001-1986.2019.03.006

    WANG Baoli. Development and application of software in seismic while mining data processing[J]. Coal Geology & Exploration, 2019, 47(3): 29-34. DOI: 10.3969/j.issn.1001-1986.2019.03.006

    [9] 段建华, 王云宏, 王保利. 随采地震监测数据采集控制软件开发[J]. 煤田地质与勘探, 2019, 47(3): 35-40. DOI: 10.3969/j.issn.1001-1986.2019.03.007

    DUAN Jianhua, WANG Yunhong, WANG Baoli. Development of data acquisition and control software for seismic monitoring with mining[J]. Coal Geology & Exploration, 2019, 47(3): 35-40. DOI: 10.3969/j.issn.1001-1986.2019.03.007

    [10] 覃思, 程建远. 煤矿井下随采地震反射波勘探试验研究[J]. 煤炭科学技术, 2015, 43(1): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501031.htm

    QIN Si, CHENG Jianyuan. Experimental study on seismic while mining for underground coal mine reflection survey[J]. Coal Science and Technology, 2015, 43(1): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501031.htm

    [11] 程建远, 覃思, 陆斌, 等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探, 2019, 47(3): 1-9. DOI: 10.3969/j.issn.1001-1986.2019.03.001

    CHENG Jianyuan, QIN Si, LU Bin, et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration, 2019, 47(3): 1-9. DOI: 10.3969/j.issn.1001-1986.2019.03.001

    [12] 陆斌, 程建远, 胡继武, 等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报, 2013, 38(12): 2202-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312021.htm

    LU Bin, CHENG Jianyuan, HU Jiwu, et al. Shearer source signal extraction and preliminary application[J]. Journal of China coal society, 2013, 38(12): 2202-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312021.htm

    [13] 覃思. 随采地震井-地联合超前探测的试验研究[J]. 煤田地质与勘探, 2016, 44(6): 148-151. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e4b6610a-f15c-4025-90bc-cbb782e89401

    QIN Si. Underground-surface combined seismic while mining advance detection[J]. Coal Geology & Exploration, 2016, 44(6): 148-151. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e4b6610a-f15c-4025-90bc-cbb782e89401

    [14] 刘强. 随采地震噪声衰减研究[J]. 煤田地质与勘探, 2019, 47(3): 25-28. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=5455f35d-699b-4373-b713-778b24c0e971

    LIU Qiang. Study on noise attenuation of seismic while mining[J]. Coal Geology & Exploration, 2019, 47(3): 25-28. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=5455f35d-699b-4373-b713-778b24c0e971

    [15] 覃思, 崔伟雄, 王伟. 随采地震数据质量定量评价[J]. 煤田地质与勘探, 2019, 47(3): 20-24. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ebba2792-b1c2-49d9-bad5-e50f0ed17046

    QIN Si, CUI Weixiong, WANG Wei. Quantitative quality evaluation of seismic-while-mining data[J]. Coal Geology & Exploration, 2019, 47(3): 20-24. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ebba2792-b1c2-49d9-bad5-e50f0ed17046

    [16] 陆斌. 基于孔间地震细分动态探测的透明工作面方法[J]. 煤田地质与勘探, 2019, 47(3): 10-14. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d48fe824-201d-40f6-9de4-5d17286c7deb

    LU Bin. Method of transparent working face based on dynamic detection of cross hole seismic subdivision[J]. Coal Geology & Exploration, 2019, 47(3): 10-14. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d48fe824-201d-40f6-9de4-5d17286c7deb

    [17] 陆斌, 程建远, 胡继武, 等. 基于检波器细分阵列的煤矿开采地震探测系统及方法: ZL201810610808. X[P]. 2018-10-23.

    LU Bin, CHENG Jianyuan, HU Jiwu, et al. Coal mining-seismic detection system and method based on geophone subdivision array: ZL201810610808. X[P]. 2018-10-23.

    [18] 陆斌. 基于噪声地震干涉的煤矿工作面随采成像方法[J]. 煤田地质与勘探, 2016, 44(6): 142-147.

    LU Bin. A Seismic while mining method of coal working-face based on seismic interferometry[J]. Coal Geology & Exploration, 2016, 44(6): 142-147.

    [19] 张唤兰, 王保利. 基于分段波形互相关的井下随采地震数据成像[J]. 煤田地质与勘探, 2020, 48(4): 29-33. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a44b9e8a-713c-4d4f-a1cc-dcf367483894

    ZHANG Huanlan, WANG Baoli. Waveform cross correlation-based imaging of underground seismic data while mining[J]. Coal Geology & Exploration, 2020, 48(4): 29-33. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a44b9e8a-713c-4d4f-a1cc-dcf367483894

    [20] 金丹. 综采工作面随采地震的采煤机震源模拟[J]. 煤田地质与勘探, 2019, 47(3): 15-19. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=41513457-737a-4ba6-90eb-8ddb9ca2f05f

    JIN Dan. Simulation of seismic-while-mining with shearer as source of fully mechanized mining face[J]. Coal Geology & Exploration, 2019, 47(3): 15-19. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=41513457-737a-4ba6-90eb-8ddb9ca2f05f

  • 期刊类型引用(4)

    1. 张刚,彭涛. 全断面电控钻机加杆装置及控制系统. 煤矿安全. 2023(03): 232-238 . 百度学术
    2. 董明. 地铁施工过程中旋挖钻机变幅机构动力学特性分析. 建筑机械. 2023(04): 163-166 . 百度学术
    3. 邬迪,刘智,王松. 煤矿井下穿层钻孔钻机模块化设计. 煤矿安全. 2021(02): 126-130 . 百度学术
    4. 王天龙,宋海涛,董洪波. 煤矿小断面硬岩巷掘进用远控钻机. 煤矿安全. 2021(09): 167-171 . 百度学术

    其他类型引用(2)

图(9)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  24
  • PDF下载量:  20
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-01-20
  • 修回日期:  2021-03-17
  • 发布日期:  2021-06-24

目录

    /

    返回文章
    返回