煤储层含气性深度效应与成藏过程耦合关系

陈世达, 侯伟, 汤达祯, 李翔, 许浩, 陶树, 李松, 唐淑玲

陈世达, 侯伟, 汤达祯, 李翔, 许浩, 陶树, 李松, 唐淑玲. 煤储层含气性深度效应与成藏过程耦合关系[J]. 煤田地质与勘探.
引用本文: 陈世达, 侯伟, 汤达祯, 李翔, 许浩, 陶树, 李松, 唐淑玲. 煤储层含气性深度效应与成藏过程耦合关系[J]. 煤田地质与勘探.
CHEN Shida, HOU Wei, TANG Dazhen, LI Xiang, XU Hao, TAO Shu, LI Song, TANG Shuling. The coupling relationship between the depth effect of coalbed gas content and the formation process[J]. COAL GEOLOGY & EXPLORATION.
Citation: CHEN Shida, HOU Wei, TANG Dazhen, LI Xiang, XU Hao, TAO Shu, LI Song, TANG Shuling. The coupling relationship between the depth effect of coalbed gas content and the formation process[J]. COAL GEOLOGY & EXPLORATION.

 

煤储层含气性深度效应与成藏过程耦合关系

基金项目: 

国家自然科学基金项目(42130802);中央高校基本科研业务费专项资金项目(2652022036);中石油煤层气有限责任公司科技项目(2023-KJ-18)

详细信息
    作者简介:

    陈世达,1991年生,男,山东莒县人,博士,副教授,硕士生导师,从事非常规油气开发地质相关的教学和科研工作.E-mail:cugb_csd@126.com

  • 中图分类号: TE122;P618.11

The coupling relationship between the depth effect of coalbed gas content and the formation process

  • 摘要: 埋深是影响煤层气富集程度的综合要素,理解含气性深度效应是认识深浅部煤层气赋存状态与聚集机制的重要基础。基于煤层气勘探现状,在剖析鄂尔多斯盆地东缘煤层气探井资料的基础上,综合常规-非常规油气成藏地质学理论,探讨了煤层含气量、饱和吸附量、含气饱和度深度效应及其与成藏过程的耦合关系。煤层气成藏是构造沉降阶段生烃供气和回返抬升阶段相态转化、逸散的耦合结果,体现为自封闭成藏和浮力成藏的深度耦合,含气性变化存在饱和吸附量转折和游离气滞留两个关键深度界限,且二者不具备绝对同步性:(1)饱和吸附气量是煤在特定温压条件下的固有属性,不受保存条件的严格限制,其随深度的演化过程是控制相态转换的基础,压力梯度和变质程度补偿效应会引起现今区域饱和吸附量转折深度(带)的明显滞后;(2)游离气的运聚成藏与改造定型受控于地层回返抬升阶段的遮盖条件,涉及埋深-构造-水动力场三元耦合效应及浮力、储盖层毛管力的综合影响,抬升幅度小且改造强度弱时方可具备游离气滞留保存条件,滞留深度以浅地层封闭性降低,游离气普遍散失。鄂尔多斯盆地东缘柳林—延川南一带煤层总含气量随埋深增大近乎线性增高,深部收敛趋势不明显,不同变质程度煤理论饱和吸附量转折深度为1 600~2 200 m,但煤阶的区域分异致使原位饱和吸附量随埋深持续增大;大宁-吉县区块游离气滞留临界深度约2 000 m,2 500 m处含气饱和度平均120%,3000 m处含气饱和度预计可达136%。不同地区煤层气成藏背景和地质条件存在差异,含气性深度效应需具体分析,分析重点应聚焦于甲烷相态转换、地层封闭条件的时空演化对现今气、水分布的综合影响,以实现深部煤层气的分区分带评价和高效开发设计。
    Abstract: Depth is a comprehensive factor influencing coalbed methane (CBM) enrichment, and the depth effect of gas content is an important basis for understanding the storage state and accumulation mechanism in both deep and shallow zones. Based on the current status of CBM exploration and analyzing the data from exploration wells in the eastern margin of the Ordos Basin, the coupling relationship between depth effects of gas content, adsorption capacity, gas saturation, and reservoir formation process were discussed using both conventional and unconventional petroleum geology theories. It is pointed out that the CBM formation is a coupled result of hydrocarbon generation during the structural subsidence phase and phase transformation and dissipation during the uplift phase, which is manifested as a deep coupling of self-sealing storage and buoyancy storage. The variation in gas content involves two critical depth thresholds:the turning point of saturated adsorption capacity and the depth of retained free gas. Importantly, these two thresholds do not exhibit absolute synchronicity:The saturated adsorption capacity is an intrinsic property of coal under specific temperature and pressure conditions, not strictly constrained by preservation conditions. Its dynamic evolution process controls the phase transition and is influenced by pressure gradients and rank compensation effects, leading to a noticeable lag in the turning depth (zone) of current regional saturation adsorption capacity. The accumulation of free gas is controlled by the covering conditions during the stratum uplift phase, involving the comprehensive impact of burial depth-structure-hydrology tri-coupling effects, as well as the effects of buoyancy, reservoir/caprock capillary force. Super-saturated gas reservoirs can form only with small uplift amplitude and the weak transformation intensity, while the weaker sealing capacity of shallow strata leading to widespread loss of free gas. In the area from Liulin to Yanchuannan in the eastern margin of Ordos Basin, the total gas content continues to increase with depth, with a gradual convergence trend in the deep zones being less pronounced. The theoretic turning depth of in-situ saturated adsorption capacity is in the range of 1600-2200 m, but the regional differentiation of coal rank results in a continuous increase in saturated adsorption capacity with depth. In Daning block, the critical depth of free gas retention is approximately 2000 m, the average gas saturation is 120% at 2500 m, and it is estimated to reach 136% at 3000 m. Different regions exhibit variations in the geological background and conditions, necessitating a specific analysis of the depth effects of gas content. The analysis should focus on the comprehensive impact of the spatial-temporal evolution of methane phase transitions and formation sealing conditions on the current distribution of gas and water. This is crucial for achieving zonal evaluation and efficient development design of deep CBM.
  • [1] 徐凤银,聂志宏,孙伟等.大宁-吉县区块深部煤层气高效开发理论技术体系[J/OL].煤炭学报:1-17[2023-12-03]. https://doi.org/10.13225/j.cnki.jccs.YH23.1290.

    XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technological system for highly efficient development of deep coalbed methane in Daning-Jixian Block[J/OL]. Journal of China Coal Society:1-17[2023-12-03]. https://doi.org/10.13225/j.cnki.jccs.YH23.1290.

    [2] 徐凤银,侯伟,熊先钺等.中国煤层气产业现状与发展战略[J].石油勘探与开发,2023,50(4):669-682

    . XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669-682

    [3] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115-130.

    XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115-130.

    [4] 聂志宏,徐凤银,时小松,等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J/OL]. 煤田地质与勘探:1-11[2023-12-03]. http://kns.cnki.net/kcms/detail/61.1155.P.20231113.1609.002.html.

    NIE Zhihong,XU Fengyin,SHI Xiaowei,et al. Enlightenment and effect of deep coalbed methane development pilot test in the eastern margin of Ordos Basin[J/OL]. Coal Geology & Exploration:1-11[2023-12-03]. http://kns.cnki.net/kcms/detail/61.1155.P.20231113.1609.002.html.

    [5] 郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J].中国石油勘探,2021,26(06):38-49.

    GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(06):38-49.

    [6] 康永尚,邓泽,皇甫玉慧,等. 中煤阶煤层气高饱和-超饱和带的成藏模式和勘探方向[J]. 石油学报,2020,41(12):1555-1566.

    KANG Yongshang,DENG Ze,HUANGFU Yuhui,et al. Accumulation model and exploration direction of high to oversaturation zone of the medium-rank coalbed methane[J].Acta Petrolei Sinica,2020,41(12):1555-1566.

    [7] 秦勇.中国深部煤层气地质研究进展[J].石油学报,2023,44(11):1791-1811.

    QIN Yong. Progress on geological research of deep coalbed methane in China [J]. Acta Petrolei Sinica,2023,44(11):1791-1811.

    [8] 陈世达,汤达祯,侯伟等.深部煤层气地质条件特殊性与储层工程响应[J].石油学报,2023,44(11):1993-2006..

    CHEN Shida,Tang Dazhen,HOU Wei,et al. Geological particularity and reservoir engineering response of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1993-2006..

    [9] 宋岩,赵孟军,柳少波,等. 构造演化对煤层气富集程度的影响[J]. 科学通报,2005(S1):1-5.

    SONG Yan,ZHAO Mengjun,LIU Shaobo,et al. The impact of structural evolution on the coalbed methane enrichment degree[J]. Chinese Science Bulletin,2005(S1):1-5.

    [10] 秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48-54.

    QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48-54.

    [11] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125-136.

    QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125-136.

    [12] 申建,杜磊,秦勇,等. 深部低阶煤三相态含气量建模及勘探启示-以准噶尔盆地侏罗纪煤层为例[J]. 天然气工业,2015,35(3):30-35.

    SHEN Jian,DU Lei,QIN Yong,et al. 2015. Three-phase gas content model of deep low-rank coals and its implication for CBM exploration:A case study from the Jurassic coal in the Junggar Basin[J]. Natural Gas Industry,35(3):30-35.

    [13] 陈刚,李五忠. 鄂尔多斯盆地深部煤层气吸附能力的影响因素及规律[J]. 天然气工业,2011,31(10):47-49.

    CHEN Gang,LI Wuzhong. Influencing factors and patterns of CBM adsorption capacity in the deep Ordos Basin[J]. Natural Gas Industry,2011,31(10):47-49.

    [14] 郭广山,柳迎红,李林涛. 鄂尔多斯盆地东缘北段煤层含气量变化规律及控制因素[J]. 天然气地球科学,2021,32(3):416-422.

    GUO Guangshan,LIU Yinghong,LI Lintao. Study on variation law and controlling factors of coal gas content in north section of east margin of Ordos Basin[J]. Natural Gas Geoscience,2021,32(3):416-422.

    [15] 高丽军,谢英刚,潘新志,等. 临兴深部煤层气含气性及开发地质模式分析[J]. 煤炭学报,2018,43(6):1634-1640.

    GAO Lijun,XIE Yinggang,PAN Xinzhi,et al. Gas analysis of deep coalbed methane and its geological model for development in Linxing Block[J]. Journal of China Coal Society,2018,43(6):1634-1640.

    [16] 王延斌,陶传奇,倪小明,等. 基于吸附势理论的深部煤储层吸附气量研究[J]. 煤炭学报,2018,43(6):1547-1552.

    WANG Yanbin,TAO Chuanqi,NI Xiaoming,et al. Amount of adsorbed gas in deep coal reservoir based on adsorption potential theory[J]. Journal of China Coal Society,2018,43(6):1547-1552.

    [17] 苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业,2005(1):19-21.

    SU Xianbo,ZHANG Liping,LIN Xiaoying. Influence of coal rank on coal adsorption capacity[J]. Natural Gas Industry,2005,(1):19-21.

    [18] 陈刚,秦勇,胡宗全,等. 不同煤阶深煤层含气量差异及其变化规律[J]. 高校地质学报,2015,21(2):274-279.

    CHEN Gang,QIN Yong,HU Zongquan,et al. Variations of gas content in deep coalbeds of different coal ranks[J]. Geological Journal of China Universities,2015,21(2):274-279.

    [19] 杨焦生,冯鹏,唐淑玲等.大宁-吉县区块深部煤层气相态控制因素及含量预测模型[J].石油学报,2023,44(11):1879-1891.

    YANG Jiaosheng, FENG Peng, TANG Shuling, et al. Phase control factors and content prediction model of deep coalbed methane in Daning Jixian block[J]. Acta Petrolei Sinica,2023,44(11):1879-1891.

    [20] 庞雄奇,贾承造,宋岩,等. 全油气系统定量评价:方法原理与实际应用[J]. 石油学报,2022,43(06):727-759.

    PANG Xiongqi,JIA Chengzao,Song Yan,et al. Quantitative evaluation of whole petroleum system:Principle and application[J]. Acta Petrolei Sinica,2022,43(6):727-759.

    [21] 贾承造,庞雄奇,宋岩. 论非常规油气成藏机理:油气自封闭作用与分子间作用力[J]. 石油勘探与开发,2021,48(03):437-452.

    JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation:Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development,2021,48(3):437-452.

    [22] 郭旭升,腾格尔,魏祥峰,等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J].石油学报,2022,43(04):453-468.

    GUO Xusheng, Borjigin Tenger,WEI Xiangfeng,et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica,2022,43(4):453-468.

    [23] 李曙光,王成旺,王红娜,等. 大宁-吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59-67.

    LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):59-67.

    [24] 任战利,祁凯,李进步,等. 鄂尔多斯盆地热动力演化史及其对油气成藏与富集的控制作用[J]. 石油与天然气地质,2021,42(5):1030-1042.

    REN Zhanli,QI Kai,LI Jinbu,et al. Thermodynamic evolution and hydrocarbon accumulation in the Ordos Basin[J]. Oil & Gas Geology,2021,42(5):1030-1042.

    [25] 孙斌,杨敏芳,杨青,等. 准噶尔盆地深部煤层气赋存状态分析[J]. 煤炭学报,2017(S1):195-202.

    SUN Bin,YANG Minfang,YANG Qing,et al. Analysis on occurrence state of deep coalbed methane in Junggar Basin[J]. Journal of China Coal Society,2017(S1):195-202.

图(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  21
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 网络出版日期:  2024-02-01

目录

    /

    返回文章
    返回