临兴地区煤系多层合压工艺方案优化研究

王波, 张兵, 米洪刚, 杜佳, 段佳佳, 崔树辉, 张浩哲, 付天宇

王波, 张兵, 米洪刚, 杜佳, 段佳佳, 崔树辉, 张浩哲, 付天宇. 临兴地区煤系多层合压工艺方案优化研究[J]. 煤田地质与勘探.
引用本文: 王波, 张兵, 米洪刚, 杜佳, 段佳佳, 崔树辉, 张浩哲, 付天宇. 临兴地区煤系多层合压工艺方案优化研究[J]. 煤田地质与勘探.
WANG Bo, ZHANG Bin, MI Honggang, DU Jia, DUAN Jiajia, CUI Shuhui, ZHANG Haozhe, FU Tianyu. Optimization study of coal system multi-layer combined pressure process scheme in Linxing area[J]. COAL GEOLOGY & EXPLORATION.
Citation: WANG Bo, ZHANG Bin, MI Honggang, DU Jia, DUAN Jiajia, CUI Shuhui, ZHANG Haozhe, FU Tianyu. Optimization study of coal system multi-layer combined pressure process scheme in Linxing area[J]. COAL GEOLOGY & EXPLORATION.

 

临兴地区煤系多层合压工艺方案优化研究

基金项目: 

中国海洋石油有限公司“十四五”重大科技项目(KJGG-2024-1007)

详细信息
    作者简介:

    王波,1994年生,男,山西大同人,硕士,工程师,从事非常规天然气开发开采工作.E-mail:wangbo62@cnooc.com.cn

  • 中图分类号: TE357.2;P618.11

Optimization study of coal system multi-layer combined pressure process scheme in Linxing area

  • 摘要:目的】鄂尔多斯盆地东缘临兴区块含煤地层具有多层系交互赋存,纵向薄层(夹层)发育的特点,多层合压是实现煤系气经济高效开发的必然要求。多储层合压能否成功的关键取决于裂缝高度能否达到预期效果。当前裂缝垂向伸展距离和裂缝形态不明,裂缝高度预测与实际高度存在较大偏差,对增产储层体积有很大影响。【方法】通过室内实验测量煤层顶底板地应力,以上下部地层破裂压力为基础,结合现场测试数据与临界缝长公式所反映的裂缝形态,对一层煤层、上部煤层/下部砂岩、上部砂岩/下部煤层、煤层/砂岩/煤层4种模式下的合层压裂方案进行分析,提出改善裂缝形态和压裂效果的工艺优化措施。【结果和结论】结果表明:多储层合压时,以煤层起裂可利用上下部地层应力遮挡的优势,通过控制裂缝高度,增加煤层中裂缝长度;当砂岩为主要改造层位时,压裂目标为在砂岩层中造长缝、提高裂缝导流能力为主。压裂参数计算结果与现场压裂实例均表明,裂缝在缝高方向扩展突出,有必要对压裂工艺及参数进行调整,在压裂设计时根据多地层合压的需要,进行压裂液量的优化,保证缝长增量大于缝高增量。研究成果可为多层合压时各层应力计算、合压的判断依据与条件、起裂层位的选择以及不同组合地层压裂液量的设计提供一定理论依据。
    Abstract: Coal-bearing strata in the eastern edge of Ordos Basin are characterized by the interaction of multi-layer system and the development of longitudinal thin layer (interlayer), and multi-layer compression is an inevitable requirement to realize the economic and efficient development of coal gas. The key to the success of multi-layer compression depends on whether the fracture height can reach the expected effect. Currently, the vertical extension distance and fracture morphology are unknown, and there is a large deviation between the fracture height prediction and the actual height, which has a great impact on the volume of the production reservoir. Through indoor experiments to measure the top and bottom ground stresses of coal seams, based on the rupture pressure of the upper and lower strata, combined with the field test data and the fracture morphology reflected by the critical seam length formula, we analyze the combined fracturing schemes in four modes: one coal seam, upper coal seam/lower sandstone, upper sandstone/lower coal seam, and coal seam/sandstone/coal seam, and put forward the optimization measures for the process of improving the fracture morphology and the fracturing effect. The results show that, in multi-reservoir combined fracturing, starting fracturing with coal seam can take advantage of the upper and lower strata stress shielding, and increase the fracture length in coal seam by controlling the fracture height; when sandstone is the main reforming stratum, the fracturing target is to create long fractures in sandstone layer and improve the fracture inflow capacity. The results of fracturing parameter calculations and on-site fracturing examples show that the fracture extension is prominent in the direction of the seam height, which makes it necessary to adjust the fracturing process and parameters, and optimize the fracturing fluid volume according to the needs of multi-layer combined fracturing in the fracturing design, so as to ensure that the increment of the seam length is greater than the increment of the seam height. The research results can provide some theoretical basis for the calculation of the stress in each layer, the judgment basis and conditions of combined fracturing, the selection of fracture initiating layer and the design of fracturing fluid volume in different combinations of formations.
  • [1] 刘建忠, 朱光辉, 刘彦成, 等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策:以临兴-神府区块为例[J]. 石油学报, 2023, 44(11):1827-1839.

    LIU Jianzhong, ZHU Guanghui, LIU Yancheng, et al. Breakthrough, future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin:A case study of Linxing-Shenfu Block[J]. Acta Petrolei Sinica, 2023, 44(11):1827-1839.

    [2] 朱光辉, 李本亮, 李忠城, 等. 鄂尔多斯盆地东缘非常规天然气勘探实践及发展方向:以临兴-神府气田为例[J]. 中国海上油气, 2022, 34(4):16-29.

    ZHU Guanghui, LI Benliang, LI Zhongcheng, et al. Practices and development trend of unconventional natural gas exploration in eastern margin of Ordos Basin:Taking Linxing-Shenfu gas field as an example[J]. China Offshore Oil and Gas, 2022, 34(4):16-29.

    [3]

    ABBAS S, GORDELIY E, PEIRCE A, et al. Limited height growth and reduced opening of hydraulic fractures due to fracture offsets:An XFEM application[C]//All Days. The Woodlands, Texas, USA. SPE, 2014.

    [4]

    GU Hongren, SIEBRITS E. Effect of formation modulus contrast on hydraulic fracture height containment[J]. SPE Production & Operations, 2008, 23(2):170-176.

    [5]

    FISHER K, WARPINSKI N. Hydraulic-fracture-height growth:Real data[J]. SPE Production & Operations, 2012, 27(1):8-19.

    [6]

    SIMONSON E R, ABOU-SAYED A S, CLIFTON R J. Containment of massive hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1978, 18(1):27-32.

    [7] 张庆辉, 陈晓冬, 郭宁, 等. 水力裂缝高度关键影响因素不确定性分析[J]. 钻采工艺, 2020, 43(2):49-52.

    ZHANG Qinghui, CHEN Xiaodong, GUO Ning, et al. Uncertainty analysis of key factors affecting fracture height[J]. Drilling & Production Technology, 2020, 43(2):49-52.

    [8]

    PHILIPP S, AF\CSAR F, GUDMUNDSSON A. Effects of mechanical layering on hydrofracture emplacement and fluid transport in reservoirs[J]. Frontiers in Earth Science, 2013, 1:4.

    [9]

    WENG Xiaowei, CHUPRAKOV D, KRESSE O, et al. Hydraulic fracture-height containment by permeable weak bedding interfaces[J]. Geophysics, 2018, 83(3):137-152.

    [10]

    PEACOCK D C P, SANDERSON D J, ROTEVATN A. Relationships between fractures[J]. Journal of Structural Geology, 2018, 106:41-53.

    [11]

    HOU Bing, CHANG Zhi, FU Weineng, et al. Fracture initiation and propagation in a deep shale gas reservoir subject to an alternating-fluid-injection hydraulic-fracturing treatment[J]. SPE Journal, 2019, 24(4):1839-1855.

    [12]

    WAN Liming, HOU Bing, TAN Peng, et al. Observing the effects of transition zone properties on fracture vertical propagation behavior for coal measure strata[J]. Journal of Structural Geology, 2019, 126:69-82.

    [13] 陈灿, 刘贤, 肖洪天. 塔山煤矿坚硬顶板水力压裂裂缝扩展规律研究[J]. 矿业研究与开发, 2020, 40(9):75-80.

    CHEN Can, LIU Xian, XIAO Hongtian. Study of fracture propagation law of hydraulic fracturing in hard roof of tashan coal mine[J]. Mining Research and Development, 2020, 40(9):75-80.

    [14]

    TANG Jizhou, WU Kan, ZENG Bo, et al. Investigate effects of weak bedding interfaces on fracture geometry in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 165:992-1009.

    [15]

    SMITH M B, BALE A B, BRITT L K, et al. Layered modulus effects on fracture propagation, proppant placement, and fracture modeling[C]//Proceedings of SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2001.

    [16]

    TAN Peng, JIN Yan, YUAN Liang, et al. Understanding hydraulic fracture propagation behavior in tight sandstone-coal interbedded formations:An experimental investigation[J]. Petroleum Science, 2019, 16(1):148-160.

    [17]

    MCCLURE M W, HORNE R N. Discrete fracture network modeling of hydraulic stimulation:Coupling flow and geomechanics[M]. Heidelberg:Springer International Publishing, 2013.

    [18]

    WU Kan, OLSON J E. Simultaneous multifracture treatments:Fully coupled fluid flow and fracture mechanics for horizontal wells[J]. SPE Journal, 2015, 20(2):337-346.

    [19] 赵海峰, 陈勉, 金衍. 水力裂缝在地层界面的扩展行为[J]. 石油学报, 2009, 30(3):450-454.

    ZHAO Haifeng, CHEN Mian, JIN Yan. Extending behavior of hydraulic fracture on formation interface[J]. Acta Petrolei Sinica, 2009, 30(3):450-454.

    [20]

    BIOT M A, MEDLIN W L, MASSÉ L. Fracture penetration through an interface[J]. Society of Petroleum Engineers Journal, 1983, 23(6):857-869.

    [21]

    ZHENG Heng, PU Chunsheng, WANG Yong, et al. Experimental and numerical investigation on influence of pore-pressure distribution on multi-fractures propagation in tight sandstone[J]. Engineering Fracture Mechanics, 2020, 230:106993.

    [22]

    PALMER I D, CRAIG H R. Modeling of asymmetric vertical growth in elongated hydraulic fractures and application to first MWX stimulation[C]//Proceedings of SPE Unconventional Gas Recovery Symposium. Society of Petroleum Engineers, 1984.

    [23]

    ZHAO Wenwei, JI Guofa, LI Kuidong, et al. A new pseudo 3D hydraulic fracture propagation model for sandstone reservoirs considering fracture penetrating height[J]. Engineering Fracture Mechanics, 2022, 264:108358.

    [24]

    NORDGREN R P. Propagation of a vertical hydraulic fracture[J]. Society of Petroleum Engineers Journal, 1972, 12(4):306-314.

    [25] 王波, 吴鹏, 赵刚, 等. 临兴区块煤系地层多层合压可行性研究[J]. 煤炭工程, 2022, 54(6):151-157.

    WANG Bo, WU Peng, ZHAO Gang, et al. Feasibility analysis of coal-measure strata multi-layer compression in Linxing Block[J]. Coal Engineering, 2022, 54(6):151-157.

    [26] 杨秀春, 徐凤银, 王虹雅, 等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探, 2022, 50(3):30-41.

    YANG Xiuchun, XU Fengyin, WANG Hongya, et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration, 2022, 50(3):30-41.

    [27] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1):115-130.

    XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1):115-130.

    [28] 高向东, 王延斌, 倪小明, 等. 临兴地区深部煤岩力学性质及其对煤储层压裂的影响[J]. 煤炭学报, 2020, 45(增刊2):912-921.

    GAO Xiangdong, WANG Yanbin, NI Xiaoming, et al. Mechanical properties of deep coal and rock in Linxing area and its influence on coal reservoir fracturing[J]. Journal of China Coal Society, 2020, 45(Sup.2):912-921.

计量
  • 文章访问数:  20
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 修回日期:  2024-06-25
  • 网络出版日期:  2024-08-08

目录

    /

    返回文章
    返回