考虑层理倾角的硬质砂岩力学行为及破裂响应特征

宋战平, 刘洪珂, 郑方, 程昀, 孙引浩, 宋婉雪

宋战平, 刘洪珂, 郑方, 程昀, 孙引浩, 宋婉雪. 考虑层理倾角的硬质砂岩力学行为及破裂响应特征[J]. 煤田地质与勘探.
引用本文: 宋战平, 刘洪珂, 郑方, 程昀, 孙引浩, 宋婉雪. 考虑层理倾角的硬质砂岩力学行为及破裂响应特征[J]. 煤田地质与勘探.
SONG Zhanping, LIU Hongke, ZHENG Fang, CHENG Yun, SUN Yinhao, SONG Wanxue. Mechanical behavior and fracture response characteristics of hard sandstone considering bedding dip angle[J]. COAL GEOLOGY & EXPLORATION.
Citation: SONG Zhanping, LIU Hongke, ZHENG Fang, CHENG Yun, SUN Yinhao, SONG Wanxue. Mechanical behavior and fracture response characteristics of hard sandstone considering bedding dip angle[J]. COAL GEOLOGY & EXPLORATION.

 

考虑层理倾角的硬质砂岩力学行为及破裂响应特征

基金项目: 

国家自然科学基金项目(52178393,51878549);陕西省创新能力支撑计划项目(2020TD-005)

详细信息
    作者简介:

    宋战平,1974年生,男,陕西蒲城人,博士,教授,从事隧道和地下工程方面的教学和工作.E-mail:songzhpyt@xauat.edu.cn

    通讯作者:

    郑方,1989年生,女,陕西咸阳人,博士,讲师,从事黄土力学与工程研究工作.Email:zhengfang@xauat.edu.cn

  • 中图分类号: TU45

Mechanical behavior and fracture response characteristics of hard sandstone considering bedding dip angle

  • 摘要: 针对考虑层理倾角的硬质砂岩力学行为及破裂响应特征问题,对不同层理倾角的硬质砂岩进行单轴压缩试验,深入探究层理倾角对硬质砂岩力学行为的影响以及层理倾角与碎块分形特征之间的关系。试验结果表明,层理倾角对硬质砂岩应力-应变曲线的类型特征无显著影响,但倾角较小时(0°、22.5°、45.0°),曲线表现为单峰变化规律,倾角较大时(67.5°、90.0°),曲线表现为多峰变化规律,且曲线波动位置主要位于峰值附近。峰值应力σd和峰值应变εd均在倾角为67.5°(最不利层理结构面)时达到最小值46.25 MPa和9.80×10-3,层理倾角对硬质砂岩应力的影响明显大于应变,受层理倾角的影响,硬质砂岩的各向异性度为1.32~1.64,表现出低各向异性特征。硬质砂岩随着层理倾角的增大呈现出剪切破坏-剪切张拉复合破坏-层理结构面剪切破坏-劈裂破坏的损伤破坏演化规律;单轴压缩下硬质砂岩的碎块质量特征和分形特征明显,硬质砂岩碎块以中块分布为主,层理倾角对细粒碎块的质量分布影响较小,其分形维数值位于1~2,碎块较大比例分布在大尺寸分布区间。研究结果可为含层理结构面岩石的稳定性及地下空间工程灾害防治提供理论参考。
    Abstract: Aiming at the mechanical behavior and fracture response characteristics of hard sandstone considering bedding dip angle, uniaxial compression tests of hard sandstone with different bedding dip angle were carried out to explore the influence of bedding dip angle on the mechanical behavior of hard sandstone and the relationship between bedding dip angle and fractal characteristics of fragments. The test results show that the bedding dip angle has no significant effect on the type characteristics of the stress-strain curve of hard sandstone, but when the dip angle is small (0°, 22.5°, 45°), the curve shows the law of single peak. When the dip angle is large (67.5°, 90°), the curve shows the law of multi-peak, and the fluctuation position of the curve is mainly near the peak value. Both peak stress σd and peak strain εd reach the minimum values 46.25 MPa and 9.80×10-3 when the dip angle is 67.5° (the most unfavorable bedding structural plane). The effect of bedding dip angle on the stress of hard sandstone is obviously greater than that of strain. Affected by bedding dip angle, the degree of anisotropy of hard sandstone is 1.32-1.64, showing the characteristics of low anisotropy. The bedding dip angle has a significant influence on the failure mode of hard sandstone. With the increase of bedding dip angle, the hard sandstone shows the damage failure evolution law of shear failure-shear tension compound failure-bedding structural plane shear failure-splitting failure. Under uniaxial compression, the quality and fractal characteristics of hard sandstone are obvious, the hard sandstone fragments are mainly distributed in middle blocks, and the bedding dip angle has little influence on the mass distribution of fine-grained fragments, and the value of fractal dimension is in 1-2. A large proportion of fragments are distributed in the range of large size distribution. The research results can provide theoretical reference for the stability of rock with bedding structural plane and the disaster prevention and control of underground space engineering.
  • [1] 罗宁,索云琛,张浩浩,等. 循环冲击层理煤岩动力学行为及破坏规律研究[J]. 爆炸与冲击,2023,43(4):043102. LUO Ning,SUO Yunchen,ZHANG Haohao,et al. On dynamic behaviors and failure of bedding coal rock subjected to cyclic impact[J]. Explosion and Shock Waves,2023,43(4):043102.
    [2] 祁敬茗,张红丹,周磊,等. 基于离散元法三裂纹岩石裂纹扩展特征的试验与数值研究[J/OL]. 矿业安全与环保. https://kns.cnki.net/kcms/detail/50.1062.TD.20230404.1334.002.html" target="_blank"> https://kns.cnki.net/kcms/detail/50.1062.TD.20230404.1334.002.html. QI Jingming,ZHANG Hongdan,ZHOU Lei,et al. Experimental and numerical study of crack propagation characteristics of tri-cracked rocks based on discrete element method[J/OL]. Mining Safety & Environmental Protection. https://kns.cnki.net/kcms/detail/50.1062.TD.20230404.1334.002.html" target="_blank"> https://kns.cnki.net/kcms/detail/50.1062.TD.20230404.1334.002.html.
    [3] 王聪聪,李江腾,林杭,等. 板岩单轴压缩各向异性力学特征[J]. 中南大学学报(自然科学版),2016,47(11):3759−3764. WANG Congcong,LI Jiangteng,LIN Hang,et al. Anisotropic mechanical characteristics of slate in uniaxial compression[J]. Journal of Central South University (Science and Technology),2016,47(11):3759−3764.
    [4] 冯小磊,马振乾,陈安民. 干湿循环作用下红页岩力学特性与能量特征研究[J]. 矿业安全与环保,2023,50(4):47−54. FENG Xiaolei,MA Zhenqian,CHEN Anmin. Study on mechanical and energy characteristics of red shale under wettingdrying cycle[J]. Mining Safety & Environmental Protection,2023,50(4):47−54.
    [5] 李斌,黄达,马文著. 层理面特性对砂岩断裂力学行为的影响研究[J]. 岩土力学,2020,41(3):858−868. LI Bin,HUANG Da,MA Wenzhu. Study on the influence of bedding plane on fracturing behavior of sandstone[J]. Rock and Soil Mechanics,2020,41(3):858−868.
    [6]

    GAO Quan,TAO Junliang,HU Jianying,et al. Laboratory study on the mechanical behaviors of an anisotropic shale rock[J]. Journal of Rock Mechanics and Geotechnical Engineering,2015,7(2):213−219.

    [7] 赵振峰,刘汉斌,杜现飞,等. 页岩油藏多段水平井压后关井阶段压力扩散数学模型研究[J]. 地质与勘探,2022,58(3):686−696. ZHAO Zhenfeng,LIU Hanbin,DU Xianfei,et al. Pressure diffusion at the shut-in stage of multi-section horizontal wells in shale oil reservoirs[J]. Geology and Exploration,2022,58(3):686−696.
    [8] 贾炳,魏建平,温志辉,等. 基于层理影响的煤样加载过程声发射差异性分析[J]. 煤田地质与勘探,2016,44(4):35−39. JIA Bing,WEI Jianping,WEN Zhihui,et al. The analysis of the differences of acoustic emission during loading process based on the influence of bedding[J]. Coal Geology & Exploration,2016,44(4):35−39.
    [9]

    NIANDOU H,SHAO J F,HENRY J P,et al. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(1):3−16.

    [10] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 工程岩体试验方法标准:GB/T 50266—2013[S]. 北京:中国计划出版社,2013.
    [11] 余思昕,肖杰灵,景璞,等. 单轴荷载下聚氨酯固化道床碎石道砟体压缩性能研究[J]. 铁道科学与工程学报,2021,18(5):1113−1120. YU Sixin,XIAO Jieling,JING Pu,et al. Compression performance of polyurethane reinforced ballast bed ballast body under uniaxial load[J]. Journal of Railway Science and Engineering,2021,18(5):1113−1120.
    [12] 侯宪港. 单轴压缩条件下弱胶结砂岩的力学及声发射特性研究[D]. 沈阳:东北大学,2014. HOU Xiangang. Mechanical properties and acoustic emission characteristics of weakly cemented sandstone under uniaxial compression[D]. Shenyang:Northeastern University,2014.
    [13] 刘泉声,胡云华,刘滨. 基于试验的花岗岩渐进破坏本构模型研究[J]. 岩土力学,2009,30(2):289−296. LIU Quansheng,HU Yunhua,LIU Bin. Progressive damage constitutive models of granite based on experimental results[J]. Rock and Soil Mechanics,2009,30(2):289−296.
    [14] 殷鹏飞. 层状复合岩石试样力学特性单轴压缩试验与颗粒流模拟研究[D]. 徐州:中国矿业大学,2016. YIN Pengfei. Experiment and particle flow simulation on mechanical properties of layered composite rock under uniaxial compression[D]. Xuzhou:China University of Mining and Technology,2016.
    [15] 徐志英. 岩石力学[M]. 北京:水利电力出版社,1993.
    [16] 李卉,魏臣兴,俞宏伟,等. 基于声波测试法对鹰滩页岩各向异性分析[J]. 地质与勘探,2022,58(6):1291−1300. LI Hui,WEI Chenxing,YU Hongwei,et al. Anisotropic properties of the eagle ford shale by ultrasonic velocity measurements[J]. Geology and Exploration,2022,58(6):1291−1300.
    [17] 何柏,谢凌志,李凤霞,等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学:物理学力学天文学,2017,47(11):114611. HE Bo,XIE Lingzhi,LI Fengxia,et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale[J]. Scientia Sinica–Physica Mechanica & Astronomica,2017,47(11):114611.
    [18] 张伯虎,马浩斌,田小朋,等. 层状页岩力学参数的各向异性研究[J]. 地下空间与工程学报,2020,16(增刊2):634−638. ZHANG Bohu,MA Haobin,TIAN Xiaopeng,et al. Deep layered shale mechanical parameters anisotropy study[J]. Chinese Journal of Underground Space and Engineering,2020,16(Sup.2):634−638.
    [19] 蔡美峰. 岩石力学与工程[M]. 北京:科学出版社,2015.
    [20] 金解放,吴越,张睿,等. 冲击速度和轴向静载对红砂岩破碎及能耗的影响[J]. 爆炸与冲击,2020,40(10):103101. JIN Jiefang,WU Yue,ZHANG Rui,et al. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion and Shock Waves,2020,40(10):103101.
    [21]

    DEN OUTER A,KAASHOEK J F,HACK H R G K. Difficulties with using continuous fractal theory for discontinuity surfaces[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(1):3−9.

    [22] 姚精明,许自文,王建,等. 基于多重分形理论的冲击地压电磁辐射预测[J]. 矿业安全与环保,2021,48(5):59−63. YAO Jingming,XU Ziwen,WANG Jian,et al. Prediction of rock burst electromagnetic radiation based on multifractal theory[J]. Mining Safety & Environmental Protection,2021,48(5):59−63.
    [23] 何满潮,杨国兴,苗金丽,等. 岩爆实验碎屑分类及其研究方法[J]. 岩石力学与工程学报,2009,28(8):1521−1529. HE Manchao,YANG Guoxing,MIAO Jinli,et al. Classification and research methods of rockburst experimental fragments[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1521−1529.
    [24]

    CHENG Yun,SONG Zhanping,SONG Wanxue,et al. Strain performance and fracture response characteristics of hard rock under cyclic disturbance loading[J]. Geomechanics and Engineering,2021,26(6):551−563.

图(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2023-09-24
  • 网络出版日期:  2023-11-26

目录

    /

    返回文章
    返回