神府区块深部煤储层力学特性及裂缝扩展机制

米洪刚, 吴见, 彭文春, 徐立富, 李勇

米洪刚, 吴见, 彭文春, 徐立富, 李勇. 神府区块深部煤储层力学特性及裂缝扩展机制[J]. 煤田地质与勘探.
引用本文: 米洪刚, 吴见, 彭文春, 徐立富, 李勇. 神府区块深部煤储层力学特性及裂缝扩展机制[J]. 煤田地质与勘探.
MI Honggang, WU Jian, PENG Wenchun, XU Lifu, LI Yong. Research on numerical simulation method of hydraulic fracturing for deep coal seam in Shenfu block based on mechanical property and in-situ stress[J]. COAL GEOLOGY & EXPLORATION.
Citation: MI Honggang, WU Jian, PENG Wenchun, XU Lifu, LI Yong. Research on numerical simulation method of hydraulic fracturing for deep coal seam in Shenfu block based on mechanical property and in-situ stress[J]. COAL GEOLOGY & EXPLORATION.

 

神府区块深部煤储层力学特性及裂缝扩展机制

基金项目: 

中海油“十四五”重大科技项目(KJGG-2022-1002)

详细信息
    作者简介:

    米洪刚,1975年生,男,山东聊城人,教授级高级工程师,从事致密气和煤层气生产管理工作.E-mail:mihg@cnooc.com.cn

  • 中图分类号: P618.11

Research on numerical simulation method of hydraulic fracturing for deep coal seam in Shenfu block based on mechanical property and in-situ stress

  • 摘要: 明确煤力学性质和地应力的分布特征及其对人工裂缝形态和扩展行为的控制机制,对深部煤层压裂设计、井网部署和煤层气资源开发至关重要。以鄂尔多斯盆地东缘北部神府区块太原组8+9号煤为研究对象,基于声波测井、密度测井、注入压降试井和排采资料,系统分析煤层及其顶底板岩层的力学性质和地应力分布特征,揭示力学性质和地应力对水力裂缝的控制机理。结果表明:(1)8+9号煤层与顶底板形成了泥岩-煤-泥岩(占77.4%)、砂岩-煤-泥岩(15.5%)等6种组合;(2)基于声波和密度测井计算的力学参数显示,煤弹性模量在4.83~13.69 GPa (平均6.28 GPa),泊松比0.31~0.41(平均0.37),区域上以南北脆性高,中部塑性高;(3)注入压降试井计算结果显示,研究区最大水平主应力介于31.11~39.11 MPa,最小水平主应力变化范围为25.78~29.94 MPa;声波测井计算结果显示,垂向应力(平均49.12 MPa)>最大水平主应力(平均39.50 MPa)>最小水平主应力(平均33.80 MPa),煤层与顶底板最小水平主应力差在0~12.75 MPa;(4) Abaqus和Fracpro PT模拟结果显示,煤弹性模量越大,裂缝高度相对越大,当顶板与煤层的力学强度差较小时防止穿层;煤层水平主应力差增大,容易沿最大水平主应力形成单一裂缝;煤层水平主应力较顶底板水平主应力越小,易在煤层内形成较长、较低、较宽的裂缝,且不易穿层。研究认为实施较大的压裂规模、缝内暂堵技术和控制裂缝净压力等手段是提高神府区块8+9号煤水力压裂效果的主要途径。
    Abstract: It is important for fracturing design, well pattern deployment and effective development of deep coal seam to clarify the control mechanism of coal mechanical properties and in-situ stress on fracture propagation. Taking the No. 8+9 coal seams of Taiyuan Formation in Shenfu block in the northern part of the eastern margin of the Ordos Basin as the research object, based on the acoustic logging, density logging, injection pressure-drop and drainage data, the mechanical properties and stress distribution characteristics of the coal seam and its roof and floor rock layers were systematically analyzed, and the control mechanism of mechanical properties and in-situ stress on hydraulic fractures was revealed. The results show that: (1) The No.8+9 coal seams and the roof - floor form six combinations, including mudstone-coal-mudstone (accounting for 77.4%) and sandstone-coal-mudstone (15.5%). (2) The mechanical parameters based on acoustic and density logging calculations show that the elastic modulus of coal ranges from 4.83~13.69 GPa (averaging 6.28 GPa), and the Poisson's ratio ranges from 0.31 to 0.41 (averaging 0.37). The region is characterized by high brittleness in the north and south, and high plasticity in the middle. (3) The injection pressure-drop calculation results show that the maximum horizontal principal stress in the study area is between 31.11~39.11 MPa, and the minimum horizontal principal stress is between 25.78~29.94 MPa. The acoustic logging calculation results show that vertical stress (averaging 49.12 MPa) > maximum horizontal principal stress (averaging 39.50 MPa)>minimum horizontal principal stress (averaging 33.80 MPa), and the minimum horizontal principal stress difference between the coal seam and the roof and floor is 0~12.75 MPa. (4) The simulation results of Abaqus and Fracpro PT show that the height of fracture increases with the increase of elastic modulus, and it is necessary to prevent interlayer penetration when the difference in mechanical strength with the roof is small. The increase in horizontal principal stress difference of coal makes it easy to form a single fracture along the maximum horizontal principal stress. The smaller the horizontal principal stress of coal compared to the roof and floor, the easier it is to form longer, lower, and wider fractures in the coal seam, and it is not easy to penetrate the layers. The above results indicate that increasing the fracturing scale, implementing temporary plugging technology, and controlling net fracture pressure are the main ways to improve the hydraulic fracturing effect of No.8+9 coal seams in the Shenfu block.
  • [1] 秦勇, 申建, 李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业, 2022, 42(06):19-32.

    QIN Yong, SHEN Jian, LI Xiaogang. Control degree and reliability of CBM resources in China[J]. Natural Gas Industry, 2022, 42(6):19-32.

    [2] 秦勇, 申建, 史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报, 2022, 47(01):371-387.

    QIN Yong, SHEN Jian, SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society, 2022, 47(1):371-387.

    [3] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(01):115-130.

    XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(01):115-130.

    [4] 李勇, 徐立富, 刘宇, 等. 深部煤层气水赋存机制、环境及动态演化[J]. 煤田地质与勘探, 2024, 52(2):40-51.

    LI Yong, XU Lifu, LIU Yu, et al. Occurrence mechanism, environment and dynamic evolution of gas and water in deep coal seam[J]. Coal Geology & Exploration, 2024, 52(2):40-51.

    [5] 李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(02):900-917.

    LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2):900-917.

    [6] 高玉巧, 李鑫, 何希鹏, 等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探, 2021, 49(02):21-27.

    GAO Yuqiao, LI Xin, HE Xipeng, et al. Study on the main controlling geological factors of high yield deep CBM in Southern Yanchuan Block[J]. Coal Geology & Exploration, 2021, 49(2):21-27.

    [7] 李曙光, 王成旺, 王红娜, 等. 大宁-吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探, 2022, 50(09):59-67.

    LI Shuguang, WANG Chengwang, WANG Hongna, et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(9):59-67.

    [8] 郑贵强, 杨德方, 李小明, 等. 沁水盆地柿庄北区块深部煤储层特征测井评价研究[J]. 煤炭科学技术, 2019, 47(06):178-186.

    ZHENG Guiqiang, YANG Defang, LI Xiaoming, et al.Study on features and logging evaluation of deep coal reservoir in North Shizhuang Block of Qinshui Basin[J]. Coal Science and Technology, 2019, 47(6):178-186.

    [9] 孙斌, 杨敏芳, 杨青, 等. 准噶尔盆地深部煤层气赋存状态分析[J]. 煤炭学报, 2017, 42(S1):195-202.

    SUN Bin, YANG Minfang, YANG Qing, et al. Analysis of occurrence state of deep coalbed methane in Junggar Basin[J]. Journal of China Coal Society, 2017, 42(S1):195-202.

    [10] 房大志, 程泽虎, 李佳欣. 渝东南地区超深层煤层气高效压裂技术及精细排采制度研究与实践——以NY1井为例[J]. 煤田地质与勘探, 2022, 50(05):50-56.

    FANG Dazhi, CHENG Zehu, LI Jiaxin. Eefficient fracturing technology and fine drainage system of ultra-deep coalbed methane in southeast Chongqing:A case study of NY1 well[J]. Coal Geology & Exploration, 2022, 50(5):50-56.

    [11] 姚艳斌, 王辉, 杨延辉, 等. 煤层气储层可改造性评价——以郑庄区块为例[J]. 煤田地质与勘探, 2021, 49(01):119-129.

    YAO Yanbin, WANG Hui, YANG Yanhui, et al. Evaluation of the hydro-fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration, 2021, 49(1):119-129.

    [12] 刘大锰, 贾奇锋, 蔡益栋.中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术, 2022, 50(01):196-203.

    LIU Dameng, JIA Oifeng, CAl Yidong. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology, 2022, 50(1):196-203.

    [13] 赵景辉. 埋深对深部煤层气储层物性及开发效果的影响——以鄂尔多斯盆地东南缘延川南区块为例[J]. 油气地质与采收率, 2022, 29(03):62-67.

    ZHAO Jinghui. Effect of burial depth on reservoir petrophysical properties and development performance of deep coalbed methane reservoirs:A case of Yanchuannan Block in southeastern margin of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(03):62-67.

    [14] 高丽军, 逄建东, 谢英刚, 等. 临兴区块深部煤层气潜在可采地质模式分析[J]. 煤炭科学技术, 2019, 47(09):89-96.

    GAO Lijun, PANG Jiandong, XIE Yinggang, et al. Analysis on potential geological mining model of deep coalbed methane in Linxing Block[J]. Coal Science and Technology, 2019, 47(9):89-96.

    [15] 李春, 张云鹏, 张璐, 等. 沁水盆地深煤层储层特征及压裂改造技术[J]. 煤炭技术, 2016, 35(08):94-97.

    LI Chun, ZHANG Yunpeng, ZHANG Lu, et al. Characteristics of Deep Coal Seam and Fracturing Technology in Qinshui Basin[J]. Coal Technology, 2016, 35(08):94-97.

    [16] 申建, 秦勇, 傅雪海, 等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学, 2014, 25(09):1470-1476.

    SHEN Jian, QIN Yong, FU Xuehai, et al. Properties of deep coalbed methane reservoir forming conditions and critical depth discussion[J]. Natural Gas Geoscience, 2014, 25(9):1470-1476.

    [17] 肖翠, 陈贞龙, 金晓波. 延川南煤层气田煤体结构模式及改造效果分析[J]. 煤炭科学技术, 2021, 49(11):38-46.

    XIAO Cui, CHEN Zhenlong, JIN Xiaobo. Coal structure model and fracturing effect of Yanchuannan coalbed gas field[J]. Coal Science and Technology, 2021, 49(11):38-46.

    [18] 张亚飞, 张松航, 邓志宇, 等. 基于层次分析-灰色定权聚类的煤层气开发甜点预测方法——以柿庄北区块为例[J]. 煤炭科学技术, 2024, 52(05):166-175.

    ZHANG Yafei, ZHANG Songhang, DENG Zhiyu, et al. A prediction method for coalbed methane development sweet spots based on gray relational clustering:Taking Shizhuangbei Block as an example[J]. Journal of China Coal Society, 2024, 52(05):166-175.

    [19] 苏育飞, 宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质, 2023, 35(05):46-57.

    SU Yufei, SONG Ru. Study on Geological Characteristics of Deep CBM inYushewu block, Oinshui Basin and Evaluation of Transformability[J]. Coal Geology of China, 2023, 35(05):46-57.

    [20] 邱峰, 刘晋华, 蔡益栋, 等. 基于测井的煤层力学特性评价及煤层气开发有利区预测——以沁南郑庄区块3号煤层为例[J]. 煤田地质与勘探, 2023, 51(04):46-56.

    QIU Feng, LIU Jinhua, CAI Yidong, et al. Mechanical property evaluation of coalbed and favorable area prediction of coalbed methane (CBM) development based on well logging:A case study of No. 3 coal bed in Zhengzhuang Block, southern Qinshui Basin[J]. Coal Geology & Exploration, 2023, 51(4):46-56.

    [21] 李勇, 陈涛, 马啸天, 等. 煤层顶板间接压裂裂缝扩展机制及影响因素[J]. 煤炭科学技术, 2024, 52(2):171-182.

    LI Yong, CHEN Tao, MA Xiaotian, et al. Extension mechanism and influencing factors of indirect fracturing fractures on coal seam roof[J]. Coal Science and Technology, 2024, 52(2):171-182.

    [22] 张和伟, 申建, 李可心, 等. 鄂尔多斯盆地临兴西区深煤层地应力场特征及应力变化分析[J]. 地质与勘探, 2020, 56(04):809-818. ZHANG Hewei, SHEN Jian, LI Kexin, et al. Characteristics of the in-situ stress field and stress change of deep coal seams in the western Linxing area, Ordos Basin[J]. Geology and Exploration, 2020, 56(4):0809-0818.
    [23]

    XU Lifu, LI Yong, SUN Xiaoguang, et al. Geological controls on gas content in tidal flats-lagoonal and deltaic shales in the northeastern Ordos basin[J]. Geoenergy Science and Engineering, 2023, 221:111291.

    [24] 李勇, 吴鹏, 高计县, 等. 煤成气多层系富集机制与全含气系统模式-以鄂尔多斯盆地东缘临兴区块为例[J]. 天然气工业, 2022, 42(06):52-64.

    LI Yong, WU Peng, GAO Jixian, et al. Enrichment mechanism of coal-derived gas multilayer system and model of full gas-bearing system:A case study of Linxing Block, eastern margin of Ordos Basin[J]. Natural Gas Industry, 2022, 42(06):52-64.

    [25] 李勇, 徐立富, 吴鹏, 等. 鄂尔多斯盆地东缘海陆过渡相页岩岩相特征及储层差异[J]. 天然气工业, 2023, 43(08):38-54.

    LI Yong, XU Lifu, WU Peng, et al. Lithofacies characteristics and reservoir differences of marine-continental transitional shale in the eastern margin of the Ordos Basin[J]. Natural Gas Industry, 2023, 43(08):38-54.

    [26] 安琦, 杨帆, 杨睿月, 等. 鄂尔多斯盆地神府区块深部煤层气体积压裂实践与认识[J]. 煤炭学报, 2024, 49(05):2376-2393.

    AN Qi, YANG Fan, YANG Ruiyue, et al. Practice and understanding of deep coalbed methane massive hydraulic fracturing in Shenfu Block, Ordos Basin[J]. Journal of China Coal Society, 2024, 49(05):2376-2393.

    [27]

    WANG Ziwei, LI Yong, WANG Zhuangsen, et al. Factors Influencing the methane adsorption capacity of coal and adsorption heat variations[J]. Energy & Fuels, 2023, 37(17):13080-13092.

    [28] 余雄鹰, 王越之, 李自俊. 声波法计算水平主地应力值[J]. 石油学报, 1996, (03):59-63.

    YU Xiongying, WANG Yuezhi, LI Zijun. Calculation of horizontal principal geostress value using acoustic wave method[J]. Acta Petrolei Sinica, 1996, (03):59-63.

    [29] 秦绪英, 陈有明, 陆黄生. 井中应力场的计算及其应用研究[J]. 石油物探, 2003, (02):271-275.

    QIN Xuying, CHEN Youming, LU Huangsheng. Calculation of borehole stress with ful-l wave acoustic logging data and its application[J]. Geophysical Prospecting for Petroleum, 2003, (02):271-275.

    [30] 张迁, 王凯峰, 周淑林, 等. 沁水盆地柿庄南区块地质因素对煤层气井压裂效果的影响[J]. 煤炭学报, 2020, 45(07):2636-2645.

    ZHNAG Qian, WANG Kaifeng, ZHOU Shulin, et al. Influence of geological factors on hydraulic fracturing effect of coalbed methane wells in Shizhuangnan Block, Qinshui Basin[J]. Journal of China Coal Society, 2020, 45(7):2636-2645.

    [31] 王晓锋, 唐书恒, 解慧, 等. 沁水盆地南部煤储层水力压裂裂缝发育特征的数值模拟研究[J]. 现代地质, 2012, 26(03):527-532.

    WANG Xiaofeng, TANG Shuheng, XIE Hui, et al. Numerical Simulation Research on Propagation of Hydraulic Fractures of Coal Reservoir in South Qinshui Basin[J]. Geoscience, 2012, 26(03):527-532.

计量
  • 文章访问数:  53
  • HTML全文浏览量:  7
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2024-07-22
  • 网络出版日期:  2024-08-08

目录

    /

    返回文章
    返回