无镉钎料对PDC切削齿力学性能和微观形貌的影响研究

张素慧, 姚宁平, 刘庆修, 刘欢, 王德川

张素慧, 姚宁平, 刘庆修, 刘欢, 王德川. 无镉钎料对PDC切削齿力学性能和微观形貌的影响研究[J]. 煤田地质与勘探.
引用本文: 张素慧, 姚宁平, 刘庆修, 刘欢, 王德川. 无镉钎料对PDC切削齿力学性能和微观形貌的影响研究[J]. 煤田地质与勘探.
ZHANG Suhui, YAO Ningping, LIU Qingxiu, LIU Huan, WANG Dechuan. Effect of cadmium-free filler metal on mechanical properties and microstructure of PDC cutters[J]. COAL GEOLOGY & EXPLORATION.
Citation: ZHANG Suhui, YAO Ningping, LIU Qingxiu, LIU Huan, WANG Dechuan. Effect of cadmium-free filler metal on mechanical properties and microstructure of PDC cutters[J]. COAL GEOLOGY & EXPLORATION.

 

无镉钎料对PDC切削齿力学性能和微观形貌的影响研究

基金项目: 

陕西省重点研发计划项目(2024GX-YBXM-482, 2024GX-YBXM-525)

详细信息
    作者简介:

    张素慧, 1988 年生, 女, 内蒙古呼和浩特人, 博士研究生, 助理研究员, 从事钻探机具性能测试和工艺评估工作.E-mail: zhangsuhui1221@163.com

    通讯作者:

    姚宁平, 1970 年生, 男, 甘肃泾川人, 博士, 研究员, 博士生导师, 从事煤矿井下智能钻探技术与装备的研究工作.E-mail: yaoningping@cctegxian.com

  • 中图分类号: TG454

Effect of cadmium-free filler metal on mechanical properties and microstructure of PDC cutters

  • 摘要:

    【目的】 PDC 钻头不仅是地质保障装备的重要组成部分, 更是推动煤炭行业技术进步和效率提升的关键工具。 针对目前 PDC 钻头采用含镉银钎料进行钎焊, 而镉是污染性毒性元素, 提出采用无镉环保钎料钎焊 PDC 钻头的新思路。 【方法】 从钎料与母材的润湿机制出发, 采用高银含 Sn、含 Mn、 Ni 和只含 Ni 的 Ag-Cu-Zn 系钎料对 PDC 切削齿和钢进行火焰钎焊。 分析了不同钎料的剪切强度和 PDC 切削齿的焊后性能。 对熔化温度最高的钎料焊前和焊后 PDC 切削齿进行微观形貌、 元素含量和拉曼光谱分析, 探究钎焊温度是否会对 PDC 切削齿造成热损伤。 在此基础上, 分析了钎缝界面组织形貌、 元素扩散情况、 焊后断面特征和物相组成, 阐述了无镉 Ag-Cu-Zn 系钎料钎缝形成机理。 同时测量并计算了钎料与两侧界面的润湿角和化学亲和力参数, 综合评价钎缝性能。 【结果和结论】 研究表明: (1)4 种无镉 Ag-Cu-Zn 系钎料均能满足 PDC 切削齿钎焊强度要求, 其中含 Mn、Ni 的 Ag-Cu-Zn 系钎料可获得 322.989 MPa 的强度值。 (2) 含 Sn 的 Ag-Cu-Zn 钎料钎缝形成机理是界面处元素的微扩散; 而含 Mn、 Ni 或只含 Ni 的 Ag-Cu-Zn 钎料钎缝形成机理是在界面处形成扩散层,增加了界面处的键合力。 (3) 含 3%Sn、 含 Mn、 Ni 和只含 Ni 的 Ag-Cu-Zn 系钎料为延性断口; 含5%Sn 的 Ag-Cu-Zn 系钎料为脆-韧混合断口。 (4)Mn 能降低两侧界面处富 Cu 相与母材的张力, 而 Ni只能降低钢界面处富 Cu 相的张力。 因此, 含 Mn、 Ni 的无镉 Ag-Cu-Zn 系钎料强度最高。 研究结果为环保型无镉钎料在 PDC 钻头钎焊方面的工程应用提供了理论和试验支撑, 有力推动了 PDC 钻头的钎焊技术向更加环保、 新型的方向转型升级。

    Abstract:

    [Objective] PDC bits are critical components of geological support equipment and play a vital role in advancing technology and improving efficiency in the coal industry. Currently, PDC bits are brazed using silver filler metals containing cadmium, a toxic and polluting element. This study introduces the use of environmentally friendly, cadmiumfree filler metals for brazing PDC bits. The study investigates the wetting mechanism between brazing filler metals and base materials, utilizing Ag-Cu-Zn series brazing filler metals containing high silver and Sn, Mn and Ni, and only Ni for flame brazing of PDC cutters and steel. The shear strength of different brazing solders and the performance of PDC cutters post-welding were analyzed. Microstructure, element content, and Raman spectra of PDC cutters with the highest melting temperature were examined pre- and post-brazing to assess potential thermal damage. Interface morphology, element diffusion, section features, and phase composition of brazing joints were analyzed to elucidate the formation mechanism of cadmium-free Ag-Cu-Zn series filler metal joints. Additionally, the wetting angle and chemical affinity parameters of the filler metal and interfaces were measured and calculated to comprehensively evaluate brazing performance. The results indicate that: (1) All four cadmium-free Ag-Cu-Zn brazing alloys satisfy the strength requirements for PDC cutter brazing, with Ag-Cu-Zn brazing alloys containing Mn and Ni achieving a strength of 322.989 MPa. (2) The brazing mechanism of Ag-Cu-Zn solder containing Sn involves micro-diffusion of elements at the interface. For brazing joints containing Mn and Ni or only Ni, the formation mechanism involves creating a reaction layer at the interface, which increases bonding strength. (3) The fracture morphology of Ag-Cu-Zn series brazing metal containing 3% Sn, Mn and Ni, and only Ni is ductile fracture, while the Ag-Cu-Zn series brazing alloy containing 5% Sn exhibits a brittleductile mixed fracture. (4) Mn reduces the tension between the Cu-rich phase and the base metal on both sides of the interface, whereas Ni only reduces the tension at the steel interface. Consequently, cadmium-free Ag-Cu-Zn brazing joints containing Mn and Ni have the highest strength. These findings provide theoretical and experimental support for the engineering application of environmentally friendly cadmium-free brazing filler metals in PDC bit brazing, promoting a transition towards more sustainable and advanced brazing technologies.

  • [1] 李再久,田娟娟,朱绍武,等. AgCuZnNi合金铸态组织及凝固路径分析[J]. 贵金属,2016,37(3):6–10.

    LI Zaijiu,TIAN Juanjuan,ZHU Shaowu,et al. The study on microstructure and solidification path of AgCuZnNi brazing alloy[J]. Precious Metals,2016,37(3):6–10.

    [2] 王晓飞,金程凯,方运琪,等. 微合金化低银无镉Ag-Cu-Zn钎料的性能[J]. 机械工程材料,2021,45(12):49–54. WANG Xiaofei,JIN Chengkai,FANG Yunqi,et al. Properties of microalloying low-silver and cadmium-free Ag-Cu-Zn brazing filler metal[J]. Materials for Mechanical Engineering,2021,45(12):49–54.
    [3] 王星星,彭进,薛鹏,等. AgCuZnSn钎料制备方法及合金化的研究进展[J]. 材料导报,2017,31(15):87–94.

    WANG Xingxing,PENG Jin,XUE Peng,et al. Progress in manufacturing and alloying of AgCuZnSn brazing filler metals[J]. Materials Review,2017,31(15):87–94.

    [4] 李慧芳. 钛/钢感应钎焊的AgCuZnNi钎料的研制及工艺性研究[D]. 兰州:兰州理工大学,2013. LI Huifang. Research on Ag45CuZn3. 5Ni brazing filler metal and technics for high-frequency induction brazing of TC4Tianium alloy and304Stainless steel[D]. Lanzhou:Lanzhou University of Technology,2013.
    [5] 彭宇涛. 微合金化对Ag-Cu-Zn系低银无镉钎料组织及性能的影响[D]. 杭州:中国计量大学,2020. PENG Yutao. Effects of microalloying on microstructure and properties of low silver & Cd-free Ag-Cu-Zn filler metal[D]. Hangzhou:China University of Metrology,2020.
    [6]

    XUE Peng,ZOU Yang,HE Peng,et al. Development of low silver AgCuZnSn filler metal for Cu/steel dissimilar metal joining[J]. Metals,2019,9(2):198.

    [7]

    CAO J,ZHANG L X,WANG H Q,et al. Effect of silver content on microstructure and properties of brass/steel induction brazing joint using Ag-Cu-Zn-Sn filler metal[J]. Journal of Materials Science & Technology,2011,27(4):377–381.

    [8] 陈永泰,谢明,杨有才,等. AgCuZnNi合金的显微组织与性能研究[J]. 贵金属,2015,36(3):49–54.

    CHEN Yongtai,XIE Ming,YANG Youcai,et al. Research on microstructure and properties of AgCuZnNi alloy[J]. Precious Metals,2015,36(3):49–54.

    [9]

    KARPIŃSKI M. Microstructure of a joint of sintered carbides and steel brazed with Ag-Cu-Zn-Mn-Ni filler metal[J]. Materiali in Tehnologije,2020,54(4):485–488.

    [10]

    MU Guoqian,QU Wenqing,ZHANG Yanhua,et al. Effect of Ni on the wetting and brazing characterization of 304 stainless steel by Ag–Cu alloy[J]. Journal of Materials Science,2023,58(14):6297–6312.

    [11] 卢绍平,杨红梅,杨富陶,等. Zn对AgCuNi4-0.5合金性能的影响[J]. 贵金属,2013,34(1):21–24. LU Shaoping,YANG Hongmei,YANG Futao,et al. The effect of Zn on the properties of AgCuNi4-0.5 alloy[J]. Precious Metals,2013,34(1):21–24.
    [12] 杜全斌,张黎燕,龙伟民,等. Ni、Mn元素对AgCuZn钎料润湿特性的影响[J]. 热加工工艺,2021,50(15):141–144.

    DU Quanbin,ZHANG Liyan,LONG Weimin,et al. Effects of Ni,Mn elements on wettability of AgCuZn brazing filler metals[J]. Hot Working Technology,2021,50(15):141–144.

    [13] 马超力,薛松柏,张涛,等. 铟对低银Ag-Cu-Zn钎料显微组织和性能的影响[J]. 稀有金属材料与工程,2017,46(9):2565–2570. MA Chaoli,XUE Songbai,ZHANG Tao,et al. Influences of in on the microstructure and mechanical properties of low silver Ag-Cu-Zn filler metal[J]. Rare Metal Materials and Engineering,2017,46(9):2565–2570.
    [14]

    SHI Xin,LI Yuanxing,BAI Yujie,et al. Effect of Ni in pure Cu/304 stainless steel induction brazing joints[J]. Materials Characterization,2021,182:111562.

    [15]

    Ma Chaoli,Xue Songbai,Wang Bo,et al. Effects of Ga and Ce on the Microstructure and Properties of Cadmium-free Silver Filler Metals[J]. Rare Metal Materials and Engineering,2019,48(1):0091–0096.

    [16]

    ZHU Weiwei,ZHANG He,GUO Chaohui,et al. Wetting and brazing characteristic of high nitrogen austenitic stainless steel and 316L austenitic stainless steel by Ag–Cu filler[J]. Vacuum,2019,166:97–106.

    [17]

    WU Jie,XUE Songbai,ZHANG Peng. Effect of in and Pr on the microstructure and properties of low-silver filler metal[J]. Crystals,2021,11(8):929.

    [18] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 钎料润湿性试验方法:GB/T 11364—2008[S]. 北京:中国标准出版社,2008.
    [19] 工业和信息化部. 聚晶金刚石磨耗比测定方法:JB/T 3235—2013[S]. 北京:机械工业出版社,2013.
    [20] 国家安全生产监督管理总局. 金刚石复合片不取心钻头:MT/T 786—2011[S]. 北京:煤炭工业出版社,2011.
    [21] 贠东海. 锡和镓对银基钎料组织及性能的影响[D]. 郑州:郑州大学,2014. (YUAN/YUN) Donghai. Influence of tin and gallium on microstructure and properties of Ag-Cu-Zn brazing filler metal[D]. Zhengzhou:Zhengzhou University,2014.
    [22] 彭宇涛,李佳航,李子坚,等. 低银无镉Ag-Cu-Zn钎料的合金化改性[J]. 材料热处理学报,2020,41(2):166–172. PENG Yutao,LI Jiahang,LI Zijian,et al. Alloying modification of low silver and cadmium-free Ag-Cu-Zn solder[J]. Transactions of Materials and Heat Treatment,2020,41(2):166–172.
    [23]

    D L Olson,T A Siewert,S Liu,et al. ASM Handbook Volume 6: Welding,Brazing and Soldering[M]. ASM International,1993.

    [24] 陈念贻. 键参数函数及其应用(一):金属键的形成条件[J]. 中国科学,1974,4(6):580–584. CHEN Nianyi. Bond parameter function and its application (I)—Forming conditions of metal bond[J]. Science in China,Ser. A,1974,4(6):580–584.
    [25]

    T J WHALEN,M HUMENIK. Surface tension and contact angles of copper-nickel alloys on titanium carbide[J]. Transactions of the Metallurgical Society of ALME,1960,218:952–956.

计量
  • 文章访问数:  36
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 修回日期:  2024-06-16

目录

    /

    返回文章
    返回