Transport and trapping characteristics of liquid and supercritical CO2 in saline aquifers
-
摘要: 【目的】 CO2咸水层封存是实现大规模温室气体减排的关键技术。对离岸浅部咸水层,海洋低温环境与上覆海水压力作用使其温度和压力条件相较于相同埋深陆上咸水层差异明显,地层内CO2可能以液态形式存在。与超临界态相比,液态CO2的密度、黏度及其在地层水中的溶解度更高,影响其运移和封存过程。现有研究以超临界CO2为主,液态CO2在咸水层中的运移和封存规律缺乏深入认识。【方法】 考虑液态与超临界态CO2特征,构建了浮力与毛管力作用下CO2运移与封存的数学模型。基于高精度两相渗流数值模拟,对比了注气结束后液态与超临界态CO2在咸水层中的运移特征和封存方式变化规律。【结果和结论】 结果表明:与超临界态相比,浮力主导下液态CO2垂向运移速率降低,波及体积减小。25 a后不同封存方式下液态CO2的封存量要明显低于超临界态,咸水层的封存容量更难被充分利用。局部毛管力封存占比55%,残余气封存约为40%,溶解气封存占比5%,相态对不同封存方式贡献的影响较小。地温梯度的增大有利于强化液态CO2的垂向运移,增加其波及体积,提高不同封存方式封存量及咸水层封存容量的利用效率。相同埋深条件下,超临界CO2在陆上与离岸咸水层中运移特征和封存量呈现明显差异。离岸咸水层中超临界CO2的垂向运移被抑制,降低了局部毛管力和残余气作用下CO2封存量,不利于咸水层封存容量的有效利用。研究成果可为陆上和离岸咸水层CO2高效封存提供一定指导。Abstract: [Objective] CO2 sequestration in saline aquifers is a critical technology for achieving large-scale reductions in greenhouse gas emissions. In offshore shallow saline aquifers, the low-temperature marine environment and the pressure from overlying seawater create temperature and pressure conditions that differ significantly from those in onshore aquifers at equivalent burial depths. These conditions can allow CO2 to exist in a liquid state. Compared to supercritical CO2, liquid CO2 has a higher density, viscosity, and solubility in formation brine, which influences its migration and sequestration behavior. While existing studies have primarily focused on supercritical CO2, there remains a gap in understanding the migration and sequestration processes of liquid CO2 in saline aquifers. [Methods] Considering the distinct characteristics of liquid and supercritical CO2, a mathematical model is developed to analyze CO2 migration and sequestration under the influence of buoyancy and capillary forces. Using high-resolution two-phase flow numerical simulations, this study compares the migration behavior and changes in sequestration forms of liquid and supercritical CO2 in saline aquifers following the completion of gas injection. [Results and Conclusions] The results indicate that, compared to supercritical CO2, the vertical migration rate of liquid CO2 under buoyancy-dominated conditions is lower, resulting in a smaller swept volume. After 25 a, the total amount of liquid CO2 sequestered across various trapping forms is significantly less than that of supercritical CO2, making it more challenging to fully utilize the storage capacity of the saline aquifer. Local capillary trapping accounts for 55% of the total, residual trapping for about 40%, and dissolution trapping for 5%, with the impact of phase state on the contribution of different trapping forms being relatively minor. An increase in geothermal gradient enhances the vertical migration of liquid CO2, increases its swept volume, and raises the sequestration quantity across different trapping forms, thereby improving the utilization of the saline aquifer’s storage capacity. Under the same burial depth, the migration characteristics and sequestration quantity of supercritical CO2 differ significantly between onshore and offshore saline aquifers. In offshore saline aquifers, the vertical migration of supercritical CO2 is inhibited, reducing sequestration quantities under local capillary and residual trapping, which hampers the effective utilization of the aquifer’s storage capacity. These findings provide valuable guidance for efficient CO2 sequestration in both onshore and offshore saline aquifers.
-
Keywords:
- saline aquifer /
- CO2 geological storage /
- phase behavior /
- buoyancy force /
- capillary force /
- trapping form
-
-
[1] 李阳,王锐,赵清民,等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发,2023,50(2):424-430. LI Yang,WANG Rui,ZHAO Qingmin,et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development,2023,50(2):424-430.
[2] 蒋恕,张凯,杜凤双,等. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望[J]. 地球科学,2023,48(7):2733-2749. JIANG Shu,ZHANG Kai,DU Fengshuang,et al. Progress and prospects of CO2 storage and enhanced oil,gas and geothermal recovery[J]. Earth Science,2023,48(7):2733-2749.
[3] 张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京:中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023. [4] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158-174. LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158-174.
[5] 周守为,李清平,朱军龙,等. CO2海洋封存的思考与新路径探索[J]. 天然气工业,2024,44(4):1-10. ZHOU Shouwei,LI Qingping,ZHU Junlong,et al. Consideration on CO2 marine storage and exploration of new paths[J]. Natural Gas Industry,2024,44(4):1-10.
[6] 于航,刘强,李彦尊,等. 大规模海上CCS/CCUS集群项目研究与思考[J]. 石油科技论坛,2023,42(2):90-95. YU Hang,LIU Qiang,LI Yanzun,et al. Research and thinking of large-scale offshore CCS/CCUS cluster projects[J]. Petroleum Science and Technology Forum,2023,42(2):90-95.
[7] SAADATPOOR E,BRYANT S L,SEPEHRNOORI K. New trapping mechanism in carbon sequestration[J]. Transport in Porous Media,2010,82:3-17.
[8] 王延永,彭玺伊,王晓光,等. 浮力与毛管力协同作用下层状咸水层中CO2运移机制[J]. 中国石油大学学报(自然科学版),2023,47(3):96-106. WANG Yanyong,PENG Xiyi,WANG Xiaoguang,et al. Mechanism of buoyancy and capillary forces dominated CO2 migration in layered saline aquifers[J]. Journal of China University of Petroleum(Edition of Natural Science),2023,47(3):96-106.
[9] 崔国栋,胡哲,宁伏龙,等. 咸水层毛管力圈闭机制及对非纯CO2封存效率的影响[J]. 煤炭学报,2023,48(7):2791-2801. CUI Guodong,HU Zhe,NING Fulong,et al. Local capillary entrapment and its effect on sequestration efficiencies during impure CO2 injection into saline aquifers[J]. Journal of China Coal Society,2023,48(7):2791-2801.
[10] REN Bo. Local capillary trapping in carbon sequestration:Parametric study and implications for leakage assessment[J]. International Journal of Greenhouse Gas Control,2018,78:135-147.
[11] CUI Guodong,HU Zhe,WANG Yanyong,et al. Migration characteristics and local capillary trapping mechanism after the CO2 leakage out of saline aquifers[J]. Fuel,2024,356:129347.
[12] IDE S T,JESSEN K,ORR JR F M. Storage of CO2 in saline aquifers:Effects of gravity,viscous,and capillary forces on amount and timing of trapping[J]. International Journal of Greenhouse Gas Control,2007,1(4):481-491.
[13] BRYANT S L,LAKSHMINARASIMHAN S,POPE G A. Buoyancy-dominated multiphase flow and its effect on geological sequestration of CO2[J]. SPE Journal,2008,13(4):447-454.
[14] WEN Gege,BENSON S M. CO2 plume migration and dissolution in layered reservoirs[J]. International Journal of Greenhouse Gas Control,2019,87:66-79.
[15] KHUDAIDA K J,DAS D B. A numerical analysis of the effects of supercritical CO2 injection on CO2 storage capacities of geological formations[J]. Clean Technologies,2020,2(3):333-364.
[16] VILARRASA V,SILVA O,CARRERA J,et al. Liquid CO2 injection for geological storage in deep saline aquifers[J]. International Journal of Greenhouse Gas Control,2013,14:84-96.
[17] LAND C S. Calculation of imbibition relative permeability for two- and three-phase flow from rock properties[J]. SPE Journal,1968,8(2):149-156.
[18] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science,1972,27(6):1197-1203.
[19] PENG Dingyu,ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals,1976,15(1):59-64.
[20] KUMAR A,OZAH R,NOH M,et al. Reservoir simulation of CO2 storage in deep saline aquifers[J]. SPE Journal,2005,10(3):336-348.
[21] SHI Jialin,LI Huazhou. An improved volume translation model for PC-SAFT EOS based on a distance function[J]. Chemical Engineering Science,2023,276:118800.
[22] SHI Jialin,WU Changxu,LIU Honglai,et al. Application of volume-translated rescaled perturbed-chain statistical associating fluid theory equation of state to pure compounds using an expansive experimental database[J]. AIChE Journal,2024,70(8):e18466.
[23] PEDERSEN K S,FREDENSLUND A,CHRISTENSEN P L,et al. Viscosity of crude oils[J]. Chemical Engineering Science,1984,39(6):1011-1016.
[24] DEUTSCH C V,JOURNEL A G. GSLIB:Geostatistical software library and user’s guide (Second edition)[M]. Oxford:Oxford University Press,1997.
[25] WANG Yanyong,WANG Xiaoguang,DONG Rencheng,et al. Reservoir heterogeneity controls of CO2-EOR and storage potentials in residual oil zones:Insights from numerical simulations[J]. Petroleum Science,2023,20(5):2879-2891.
[26] HOLTZ M H. Residual gas saturation to aquifer influx:A calculation method for 3-D computer reservoir model construction[R]. Calgary:SPE Gas Technology Symposium,2002.
[27] REN Bo,SUN Yuhao,BRYANT S. Maximizing local capillary trapping during CO2 injection[J]. Energy Procedia,2014,63:5562-5576.
计量
- 文章访问数: 29
- HTML全文浏览量: 0
- PDF下载量: 10