西山煤田岩溶陷落柱柱壁角特征研究及其意义

赵金贵, 王江玮, 杨高峰, 郭敏泰

赵金贵, 王江玮, 杨高峰, 郭敏泰. 西山煤田岩溶陷落柱柱壁角特征研究及其意义[J]. 煤田地质与勘探.
引用本文: 赵金贵, 王江玮, 杨高峰, 郭敏泰. 西山煤田岩溶陷落柱柱壁角特征研究及其意义[J]. 煤田地质与勘探.
ZHAO Jingui, WANG Jiangwei, YANG Gaofeng, GUO Mintai. The characteristics of Karst Collapse Pillar Wall Angle and its significance in Xishan Coalfield[J]. COAL GEOLOGY & EXPLORATION.
Citation: ZHAO Jingui, WANG Jiangwei, YANG Gaofeng, GUO Mintai. The characteristics of Karst Collapse Pillar Wall Angle and its significance in Xishan Coalfield[J]. COAL GEOLOGY & EXPLORATION.

 

西山煤田岩溶陷落柱柱壁角特征研究及其意义

基金项目: 

国家自然科学基金重大项目(42293352)

详细信息
    作者简介:

    赵金贵,1974年生,男,山西新绛人,博士,副教授,从事煤系构造与岩溶陷落柱研究.E-mail:22971865@qq.com

  • 中图分类号: TD166;P642.25

The characteristics of Karst Collapse Pillar Wall Angle and its significance in Xishan Coalfield

  • 摘要: 【意义】随着采掘向深部延伸,岩溶陷落柱已成为华北煤田矿井开采最隐蔽的致灾地质因素之一。柱壁角是描述陷落柱形态特征的重要指标之一。【方法和结果】以西山煤田上下煤层综采均切割过的265个岩溶陷落柱为数据源,通过分区、统计、函数构建、地质类比,挖掘西山煤田岩溶陷落柱柱壁角中蕴藏的地质信息,获得如下认识:(1)西山煤田陷落柱平均柱壁角为84.29°,超50%的陷落柱柱壁角在85°~90°,平均柱壁角自西北到东南逐渐增大,从82.05°增大到87.57°。(2)西山煤田陷落柱柱壁角与8号煤层揭露的陷落柱面积成反比,依据柱壁角与陷落柱面积大小关系,陷落柱划分为:充分塌陷陷落柱(90°~85°)、次充分塌陷陷落柱(<85°~81°)、不充分塌陷陷落柱(<81°);对应的2号煤层陷落柱面积分别为<556 m2、556~1 700 m2、>1 700 m2,等效半径为<13.3 m、13.3~23.3 m、>23.3 m;对应的8号煤层陷落柱面积分别为<1 250 m2、1 250~2 750 m2、>2 750 m2,半径分别为<20 m、20~30 m、>30 m。充分塌陷陷落柱一般发育有柱顶空腔,柱体结构较为松散,可导通顶板裂隙水与柱顶空腔水,以及底板承压奥灰水,是西山煤田导水陷落柱的一种重要类型。【结论】类比地质历史时期降雨量结果显示,具有“北柱南相”的西山煤田岩溶陷落柱,可能形成于气候湿热的古近纪渐新世时期,强烈的岩溶作用吸收了大气中的CO2,并锁定在沉积区,可能是导致全球大气CO2含量急剧降低的重要原因。
    Abstract: With the extension of mining to the deep, karst collapse pillar has become one of the most hidden geological factors causing disaster in coal mining in North China. Pillar wall Angle is one of the important indexes to describe the morphological characteristics of collapsed pillars. Based on 265 karst collapse pillars cut by fully mechanized mining in upper and lower coal seams in Xishan coal field as data sources, the geological information contained in the wall corner of karst collapse pillars in Xishan coal field was excavated through zoning, statistics, function construction and geological analogy, and the following understanding was obtained: (1) The average pillar wall Angle of the collapse pillar in Xishan Coalfield is 82.49°, and the pillar wall Angle of over 50% of the collapse pillar is between 85 and 90°. The average pillar wall Angle increases gradually from northwest to southeast, from 82.05° to 87.57°. (2) The wall Angle of the collapse pillar in Xishan coal field is inversely proportional to the area of the collapse pillar revealed by No. 8 coal seam. According to the relationship between the wall Angle of the collapse pillar and the area of the collapse pillar, the collapse pillar can be divided into: full collapse pillar (90° ~ 85°), sub-full collapse pillar (85° ~ 81°) and inadequate collapse pillar (< 81°); The corresponding subsidence pillar area of No. 2 coal seam is less than 556 m2, between 556 and 1700 m2, and greater than 1700 m2, and the equivalent radius is less than 13.3m, 13.3 m-23.3m, and greater than 23.3m. The corresponding collapse pillar area of No. 8 coal seam is less than 1250m2, between 1250m2 and 2750m2, and greater than 2750m2. The radius is less than 20m, between 20 and 30m, and greater than 30m. The fully collapsed collapse pillar is an important type of water-conducting collapse pillar in Xishan coal field, which generally has the top cavity and the top cavity cavity, and the pillar structure is relatively loose. (3) The rainfall results of the geological historical period show that the karst collapse pillar in the Xishan coalfield with "north pillar and south phase" may have formed in the Paleo-Oligocene period with hot and humid climate. The strong karst process absorbed atmospheric CO2 and locked it in the sedimentary area, which may be an important reason for the sharp reduction of global atmospheric CO2 content.
  • [1] 赵金贵, 郭敏泰, 李文生. 西山煤田岩溶陷落柱柱体形态与组构特征[J]. 煤炭学报, 2020, 45(7):2389-2398.

    ZHAO Jingui, GUO Mintai, LI Wensheng. Morphological and fabric characteristics of Karst collapse Pillars in Xishan Coalfield[J]. Journal of China Coal Society, 2020, 45(7):2389-2398.

    [2] 章程, 蒋忠诚, Groves C, 等. 岩溶IGCP国际合作30年与岩溶关键带研究展望[J]. 中国岩溶, 2019, 38(3):301-306.

    ZHANG Cheng, JIANG Zhongcheng, GROVES C, et al. 30 years international cooperation with IGCP and perspectives of Karst critical zone research[J]. Carsologica Sinica, 2019, 38(3):301-306.

    [3] 陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学(地球科学), 2019, 49(11):1659-1696.

    CHEN Fahu, FU Bojie, XIA Jun, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Scientia Sinica (Terrae), 2019, 49(11):1659-1696.

    [4] 袁道先. 岩溶作用对环境变化的敏感性及其记录[J]. 科学通报, 1995, 40(13):1210-1213.

    YUAN Daoxian. Sensitivity of karst to environmental change and its record[J]. Chinese Science Bulletin, 1995, 40(13):1210-1213.

    [5] 袁道先. 地质作用与碳循环研究的回顾和展望[J]. 科学通报, 2011, 56(26):2157.

    YUAN Daoxian. Review and prospect of geological process and carbon cycle research[J]. Chinese Science Bulletin, 2011, 56(26):2157.

    [6] 刘文, 徐聪聪, 于令芹, 等. 不同地质背景下北方岩溶作用强度研究[J]. 中国岩溶, 2023, 42(5):887-897.

    LIU Wen, XU Congcong, YU Lingqin, et al. Study on the intensity of boreal karstification under different geological conditions:A case study at the recharge area of Baotu Spring drainage area, Jinan, Northern China[J]. Carsologica Sinica, 2023, 42(5):887-897.

    [7] 郭红玉. 太原西山岩溶陷落柱发育时间研究[D]. 太原:太原理工大学, 2004.

    GUO Hongyu. Study on the development time of Karst collapse column in Xishan, Taiyuan[D]. Taiyuan:Taiyuan University of Technology, 2004.

    [8] 赵金贵, 郭敏泰. 太原东山大窑头煤系层间构造与岩溶陷落柱群发育模式[J]. 煤炭学报, 2013, 38(11):1999-2006.

    ZHAO Jingui, GUO Mintai. The interlayer structures and the karst collapse pillars style of the coal measure strata in Dayaotou village, Eastern Mountain, Taiyuan[J]. Journal of China Coal Society, 2013, 38(11):1999-2006.

    [9] 赵金贵, 郭敏泰. 平顺老马岭岩溶陷落柱的发现及形成时段探讨[J]. 煤炭学报, 2014, 39(8):1716-1724.

    ZHAO Jingui, GUO Mintai. Discover and formation time of karst collapse pillar in Laomaling, Pingshun County[J]. Journal of China Coal Society, 2014, 39(8):1716-1724.

    [10] 钱学溥. 石膏喀斯特陷落柱的形成及其水文地质意义[J]. 中国岩溶, 1988(04):344-348.

    Qian Xuepu. Formation of gypsum Kras collapse pillar and its hydrogeological significance[J]. China Karst, 1988(04):344-348.

    [11]

    WEI Chongtao, YUE Jianghua, LI Zhuangfu, et al. Comprehensive study on a collapse column in Kongzhuang coal mine[J]. Procedia Earth and Planetary Science, 2009, 1(1):895-902.

    [12] 赵金贵. 西山煤田岩溶陷落柱形态学特征及构造水文演化[D]. 太原:太原理工大学, 2004.

    ZHAO Jingui. Morphological characteristics and tectonic hydrological evolution of karst collapse column in Xishan Coalfield[D]. Taiyuan:Taiyuan University of Technology, 2004.

    [13] 宁建宏, 张广忠. 陷落柱的地震识别技术及其应用[J]. 煤田地质与勘探, 2005, 33(3):64-67.

    NING Jianhong, ZHANG Guangzhong. Seismic identification technique and its application of collapse column[J]. Coal Geology & Exploration, 2005, 33(3):64-67.

    [14] 尹尚先, 连会青, 刘德民, 等. 华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J]. 煤炭科学技术, 2019, 47(11):1-29.

    YIN Shangxian, LIAN Huiqing, LIU Demin, et al. 70 years of investigation on Karst collapse column in North China Coalfield:Cause of origin, mechanism and prevention[J]. Coal Science and Technology, 2019, 47(11):1-29.

    [15] 赵永清. 北徐楼煤矿陷落柱充水、导水性分析及防治[D]. 青岛:山东科技大学, 2006.

    ZHAO Yongqing. Analysis and prevention of water filling and hydraulic conductivity of collapse column in Beixulou coal mine[D]. Qingdao:Shandong University of Science and Technology, 2006.

    [16] 李骏. 阳泉新景煤矿构造叠加改造特征及其对煤体变形的控制[D]. 徐州:中国矿业大学, 2017.

    LI Jun. Characteristics of structural superposition transformation in Xinjing coal mine of Yangquan and its control on coal deformation[D]. Xuzhou:China University of Mining and Technology, 2017.

    [17] 朱学稳, 黄保健, 朱德浩, 等. 广西乐业大石围天坑群发现探测定义与研究[M]. 南宁:广西科学技术出版社, 2003.
    [18] 赵金贵, 岳科杉, 李彦荣, 等. 韩咀煤矿32101工作面采动地裂缝走向与黄土地貌关系探讨[J]. 煤炭学报, 2021, 46(增刊2):898-906.

    ZHAO Jingui, YUE Keshan, LI Yanrong, et al. Discussion on the relationship between mining-induced ground fractures strike and loess landform at 32101 face of Hanzui coal mine[J]. Journal of China Coal Society, 2021, 46(Sup.2):898-906.

    [19] 罗乾周, 张俊良, 李益朝, 等.陕西汉中天坑群形成条件与分布规律[J]. 中国岩溶, 2019, 38(2):281-291.

    LUO Qianzhou, ZHANG Junliang, LI Yichao, et al. Geologic conditions and distribution features of Tiankeng groups in Hanzhong, Shaanxi Province[J]. Carsologica Sinica, 2019, 38(2):281-291.

    [20]

    SZCZYGIEŁ J, GOLICZ M, HERCMAN H, et al. Geological constraints on cave development in the plateau-gorge Karst of South China (Wulong, Chongqing)[J]. Geomorphology, 2018, 304:50-63.

    [21]

    GABROVŠEK F, STEPIŠNIK U. On the formation of collapse dolines:A modelling perspective[J]. Geomorphology, 2011, 134(1/2):23-31.

    [22] 赵俊峰, 刘池洋, MOUNTNEY N, 等. 吕梁山隆升时限与演化过程研究[J]. 中国科学(地球科学), 2015, 45(10):1427-1438.

    ZHAO Junfeng, LIU Chiyang, MOUNTNEY N, et al. Timing of uplift and evolution of the Lüliang Mountains, North China Craton[J]. Scientia Sinica (Terrae), 2015, 45(10):1427-1438.

    [23] 徐杰, 高战武, 宋长青, 等.太行山山前断裂带的构造特征[J].地震地质, 2000, 22(2):111-122.

    XU Jie, GAO Zhanwu, SONG Changqing, et al.The structural characters of the piedmont fault zone of Taihang mountain[J].Seismology and Geology, 2000, 22(2):111-122.

    [24] 李建星, 刘池洋, 岳乐平, 等.吕梁山新生代隆升的裂变径迹证据及其隆升机制探讨[J].中国地质, 2015, 42(4):960-972.

    LI Jianxing, LIU Chiyang, YUE Leping, et al.Apatite fission track evidence for the Cenozoic uplift of the Liiliang Mountains and a discussion on the uplift mechanism[J].Geology in China, 2015, 42(4):960-972.

    [25] 王乃樑. 山西地堑系新生代沉积与构造地貌[M]. 北京:科学出版社, 1996.
    [26] 卢耀如. 岩溶水文地质环境演化与工程效应研究[M]. 北京:科学出版社, 1999.
    [27] 钱学溥. 太行期岩溶剥蚀面的发现及地文期的划分[J]. 中国岩溶, 1984, (2):27-33.

    Qian Xuepu. The discovery of karst denudation surface of the Taihang stage and the division of physiographic stages[J]. Carsologica Sinica, 1984, (2):27-33.

    [28] 任收麦, 黄宝春. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J]. 地球物理学进展, 2002, 17(1):113-120.

    REN Shoumai, HUANG Baochun. Preliminary study on post-late Paleozoic kinematics of the main blocks of the paleo-Asian ocean[J]. Progress in Geophysics, 2002, 17(1):113-120.

    [29]

    ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693.

    [30]

    DECONTO R M, POLLARD D, WILSON P A, et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2008, 455(7213):652-656.

    [31]

    AO Hong, DUPONT-NIVET G, ROHLING E. J, et al. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene-Oligocene transition[J]. Nature Communications, 2020(11), 5249.

计量
  • 文章访问数:  16
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-12
  • 修回日期:  2024-07-11
  • 网络出版日期:  2024-08-08

目录

    /

    返回文章
    返回