二连盆地巴彦花凹陷煤层气成因类型及生气潜力

孟芹, 李玲, 李杰, 田文广, 林海涛, 李恒

孟芹, 李玲, 李杰, 田文广, 林海涛, 李恒. 二连盆地巴彦花凹陷煤层气成因类型及生气潜力[J]. 煤田地质与勘探.
引用本文: 孟芹, 李玲, 李杰, 田文广, 林海涛, 李恒. 二连盆地巴彦花凹陷煤层气成因类型及生气潜力[J]. 煤田地质与勘探.
MENG Qin, LI Ling, LI Jie, TIAN Wenguang, LIN Haitao, LI Heng. Genetic type and gas-generation potential of coalbed methane in Bayanhua Sag of the Erlian Basin[J]. COAL GEOLOGY & EXPLORATION.
Citation: MENG Qin, LI Ling, LI Jie, TIAN Wenguang, LIN Haitao, LI Heng. Genetic type and gas-generation potential of coalbed methane in Bayanhua Sag of the Erlian Basin[J]. COAL GEOLOGY & EXPLORATION.

 

二连盆地巴彦花凹陷煤层气成因类型及生气潜力

基金项目: 

中国石油天然气股份有限公司“十四五”重大科技项目(2021DJ2303);中央引导地方科技发展资金项目(2022ZY0018)

详细信息
    作者简介:

    孟芹,1993年生,女,安徽淮南人,硕士,工程师,从事煤层气勘探开发技术研究工作.E-mail:mengqin1028@163.com

  • 中图分类号: P618.13

Genetic type and gas-generation potential of coalbed methane in Bayanhua Sag of the Erlian Basin

  • 摘要: 二连盆地巴彦花凹陷是内蒙古低阶煤煤层气重点开发试验区,但勘探程度相对较低,对煤层气成因认识不足,在一定程度制约了勘探开发进度。通过对巴彦花凹陷煤层气井气样水样开展气体组分、稳定同位素、水化学及放射性同位素定年等测试,并结合经典天然气成因判识图版厘清气体成因,进一步剖析生气潜力,明确生气关键要素。结果显示: C1/C1-5>0.99,CO2-CH4系数[CDMI=φ(CO2)/φ(CO2+CH4)]基本小于5%,干燥系数(C1/C2+)介于104~5 540,CH4含量高、重烃及CO2含量低。δ13C (CH4)介于-51.80‰~-67.70‰、δD (CH4)介于-226.20‰~-291.00‰,δ13C (CO2)介于-20.30‰~-37.60‰,为陆相生物成因气特征;判识图版中大部分煤层气样品落在生物成因气区域,甲烷产气途径为乙酸发酵和甲基发酵,CO2主要是微生物产甲烷活动伴生产物。煤层水来源于大气降水,主要为NaHCO3型弱碱性水,δ13CDIC为-2.6‰,δ18O为-16.4‰,结合14C定年表明水为第四纪水,非原生水,为现代混合水。结合全区构造和水文地质条件分析认为,巴彦花凹陷径流区利于乙酸发酵产气,弱径流区利于生物气富集成藏。区内低阶煤储层孔渗性较好,地温适宜,水文地质条件优越,利于生物气的生成,承压区水力封堵型生物气藏发育。水文地质条件是本区生物气形成关键,在煤层气勘探选区中应重点关注。
    Abstract: The Bayanhua Sag in Erlian Basin is a key experimental area for the development of low-rank coalbed methane(CBM) in Inner Mongolia. However, the exploration degree is relatively low and the understanding of CBM genesis is insufficient, which restricts exploration and development to a certain extent. Through carried out laboratory experiments of gas components, stable isotope, hydrochemical and radioisotope dating of CBM well gas samples and water samples in Bayanhua Sag. And comprehensive use the classical natural gas to clarify genesis. Further analyze potential and identify the key elements of gas-generation. The results show that C1/C1-5>0.99, CDMI is basically less than 5%, the drying coefficient C1/C2+ is between 224 and 5 540. The volume fraction of CH4 is high, while heavy hydrocarbons and CO2 is low. The δ13C(CH4) ranging from -51.80‰ to -67.70‰, δD(CH4) ranges from -226.20‰ to -291.00‰, and δ13C(CO2) ranges from -20.30‰ to -37.60‰, indicating a terrestrial biogenic gas characteristic. In the identification chart, most samples are located in the regions of biogenic gas, indicating that methane pathways are acetic acid fermentation and methyl fermentation, and CO2 is mainly the associated product of microbial methanogenesis. Coal seam water comes from atmospheric precipitation, mainly NaHCO3 type weakly alkaline water, δ13CDIC value is -2.6‰, δ18O is -16.4‰. Combined with 14C chronology shows that the water is quaternary water, non-primary water, but modern mixed water. Based on the analysis of geological structure and hydrogeological conditions in the whole area, the runoff area is conducive to acetic acid fermentation to produce gas, while the slow flow area is conducive to biogas enrichment and accumulation. The low-rank coal reservoir has good porosity and permeability, suitable temperature reservoir and superior hydrogeological conditions, which are conducive to the generation of biogas and the development of hydraulic plugging type biogas in the pressurized area. Hydrogeological conditions are the key to the formation of biogas, and should be paid more attention to the exploration area of CBM.
  • [1]

    FLORES R M. Coalbed methane:From hazard to resource[J]. International Journal of Coal Geology,1998,35(1):159-173.

    [2]

    SONG Yan,LIU Shaobao,ZHANG Qun,et al. Coalbed methane genesis,occurrence and accumulation in China[J]. Petroleum Science,2012,9(3):269-280.

    [3]

    GLASBY G P. Abiogenic origin of hydrocarbons:An historical overview[J]. Resource Geology,2006,56(1):83-96.

    [4]

    THIELEMANN T,CRAMER B,SCHIPPERS A. Coalbed methane in the Ruhr Basin,Germany:A renewable energy resource?[J]. Organic Geochemistry,2004,35(11):1537-1549.

    [5]

    SCOTT A R,KAOSER W R,AYERS W B. Thermogenic and secondary biogenic gases,San Juan Basin,Colorado and New Mexico-Implications for coalbed gas producibility[J]. AAPG Bulletin,1994,78(8):1186-1209.

    [6] 唐淑玲,汤达祯,孙斌,等. 富(含)CO2煤层气多源多阶成因研究进展及勘探开发启示[J]. 煤田地质与勘探,2022,50(3):58-68.

    TANG Shuling,TANG Dazhen,SUN Bin,et al. Research progress of multi-source and multi-stage genesis of CO2-enriched CBM and the enlightenments for its exploration and development[J]. Coal Geology Exploration,2022,50(3):58-68.

    [7]

    MILKOV A V. Methanogenic biodegradation of petroleum in the West Siberian Basin(Russia):significance for formation of giant Cenomanian gas pools[J]. AAPG bulletin,2010,94(10):1485-1541.

    [8]

    RICE D D. Composition and origins of coalbed gas from coal[C]//LAW B E,RICE D D. Hydrocarbons from Coal. Canada:AAPG Special Publication,1993,38:159-184.

    [9]

    SCHOELL M. The hydrogen and carbon isotopic composition of methane from natural gases of various origin[J]. Geochimica Et Cosmochimica Acta,44(5):649-661.

    [10]

    WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology.1999,161(1/2/3):291-314.

    [11]

    MACIEJJ Kotarba. Composition and origin of coalbed gases in the Upper Silesian and Lublin Basins,Poland[J]. Organic Geo-chemistry,2001,32:163-180.

    [12]

    WHITICAR M J,FABER E,SCHOELL M. Biogenic methane formation in marine and freshwater enviroment:CO2 reduction vs.acetate fermentation-isotope evidence[J]. Gechimica Et Cosmochimica Acta,1986,50(5):693-709.

    [13]

    SMITH J W,PALLASSER R J. Microbial origin of Australian coalbed methane[J]. Aapg Bulletin,1996,80(6):891-897.

    [14] 琚宜文,李清光,颜志丰,等. 煤层气成因类型及其地球化学研究进展[J]. 煤炭学报,2014,39(5):806-815.

    JU Yiwen,LI Qingguang,YAN Zhifeng,et al. Origin types of CBM and their geochemical research progress[J]. Journal of China Coal Society,2014,39(5):806-815.

    [15] 李跃国,姚程鹏,杨曙光,等. 准南米泉地区煤层气成因及其富集成藏机理研究[J]. 煤炭科学技术,2021,49(04):1-8.

    LI Yueguo,YAO Chengpeng,YANG Shuguang,et al. Study on origin and accumulation mechanism of coalbed methane in Miquan area of southern margin of Junggar Basin[J]. Journal of China Coal Society,2021,49(04):1-8.

    [16] 马行陟,宋岩,柳少波,等. 煤储层中水的成因、年龄及演化:卤素离子、稳定同位素和129 I的证据[J]. 中国科学:地球科学,2013,43:1699-1707. MA Xingzhi,SONG Yan,LI Shaobo, et al. Origin and evolution of waters in the Hancheng coal seams,the Ordos Basin,as revealed from water chemistry and isotope (H,O,129I) analyses[J]. Science China:Earth Sciences,2013,56:1962-1970.
    [17] 王海超. 沁水盆地中南部煤系气储层物性及叠置成藏模式[D]. 徐州:中国矿业大学,2017. WANG Haichao. Reservoir physical properties and superimposed accumulation model of coal measure gas in central-south Qinshui Basin[D]. Xuzhou:China University of Mining and Technology,2017.
    [18] 孙粉锦,李五忠,孙钦平,等. 二连盆地吉尔嘎朗图凹陷低阶煤煤层气勘探[J].石油学报,2017,38(5):485-492.

    SUN Fenjin,LI Wuzhong,SUN Qinping,et al. Low-rank coalbed methane exploration in the Jiergalangtu Sag,Erlian Basin[J]. Journal of Petroleum,2017,38(5):485-492.

    [19]

    LI Ling,TANG Dazhen,XU Hao,et al. Coalbed methane geology and exploration potential in large,thick,low-rank seams in the Bayanhua Sag of the Erlian Basin,northern China[J]. Energy Exploration & Exploitation,2022,40(3):995-1022.

    [20] 陶俊杰,申建,王金月,等. 二连盆地吉尔嘎朗图凹陷煤层气成因类型及方向[J]. 高校地质学报,2019,25(2):295-301.

    TAO Junjie,SHEN Jian,WANG Jinyue,et al. Genetic types and exploration prospect of coalbed methane in Jiergalangtu Depression,Erlian Basin[J]. Geological Journal of China Universities,2019,25(2):295-301.

    [21] 陶明信. 煤层气地球化学研究现状及发展趋势[J]. 自然科学进展,2005,15(6):648-652.

    TAO Mingxin. Research status and development trend of coalbed methane geochemistry[J]. Advances in Natural Science,2005,15(6):648-652.

    [22]

    GOLDING S D,BOREHAM C J,ESTERLE J S. Stable isotope geochemistry of coal bed and shale gas and related production waters:A review[J]. International Journal of Coal geology,2013,120:24-40.

    [23]

    FORMOLO M J,SALACUP J M,PETSCH S T,et al. A new model linking atmospheric methane sources to Pleistocene glaciation via methane genesis in sedimentary basins[J]. Geology,2008,36(2):139-142.

    [24]

    VINSON D S,Blair N E,Martini A M,et al. Microbial methane from in situ biodegradation of coal and shale:A review and reevaluation of hydrogen and carbon isotope signatures[J]. Chemical Geology,2017,453:128-145.

    [25] 王大锐,姜乃煌,宋孚庆. 南堡凹陷地层水中HCO3-的碳同位素特征与生物气的识别[J]. 天然气工业,1995,15(5):18-21.

    WANG Darui,JIANG Naihuang,SONG Fuqing. Carbon isotope characteristics of HCO3- and identification of biogas in formation water of Nanpu Sag[J]. Natural Gas Industry,1995,15(5):18-21.

    [26]

    BAUBLYS K A,Hamilton S K,Golding S D,et al. Microbial controls on the origin and evolution of coal seam gases and production waters of the Walloon Subgroup;Surat Basin,Australia[J]. International Journal of Coal Geology,2015,147-148:85-104.

    [27] 皇甫玉慧,康永尚,邓泽,等. 低阶煤煤层气成藏模式和勘探方向[J]. 石油学报,2019,40(7):786-797 HUANGFU Yuhui,KANG Yongshang,DENG Ze,et al. Low coal rank coalbed methane accumulation model and exploration direction[J]. Acta Petrolei Sinica,2019,40(7):786-797.
    [28] 宋佩德,范莉,潘结南,等. 新郑矿区地下水类型及水源判别[J]. 煤矿安全,2014,45(2):165-168.

    SONG Peide,FAN Li,PAN Jienan,et al. Groundwater types and water source discrimination for Xinzhen Mining area[J]. Safety in Coal Mines,2014,45(2):165-168.

    [29] 孙钦平. 二连盆地低阶煤煤层气富集特征与开发工艺优选—以霍林河、吉尔嘎朗图凹陷为例[D]. 武汉:中国地质大学(武汉),2018. SUN Qinping. The cnrichment charabteristics of low-rank coalbed methane and optimal suitable development technologies in Erlian Basin:a case study of Huolinhe and Jiergalangtu Sags[D]. Wuhan:China University of Geosciences(Wuhan),2018.
    [30] 夏大平,苏现波,吴昱,等. 不同预处理方式和模拟产气实验对煤结构的影响[J]. 煤炭学报,2013,38(1):129-133.

    XIA Daping,SU Xianbo,WU Yu. Effect of experiment of different pretreatment methods and simulating biogenic methane production on coal structure[J]. Journal of China Coal Society,2013,38(1):129-133.

    [31] 王爱宽. 褐煤本源生气特征及其作用机理[J]. 煤炭学报,2010,35(11):1945-1946.

    WANG Aikuan. Generation and mechanism of gas from brown coal under action of parent bacterium[J]. Journal of China Coal Society,2010,35(11):1945-1946.

    [32] 杨曙光,许浩,王刚,等. 低阶煤煤层气甲烷风化带划分方法及影响因素:以准南乌鲁木齐矿区为例[J]. 煤炭学报,2020,45(11):3825-3832.

    YANG Shuguang,XU Hao,WANG Gang,et al. Methane weathering zone division method and influencing factors of low-rank coalbed methane in Urumqi Mining Area,Southern Junggar Basin[J]. Journal of China Coal Society,2020,45(11):3825-3832.

    [33] 姚海鹏,吕伟波,王凯峰,等. 巨厚低阶煤煤层气储层关键成藏地质要素及评价方法—以二连盆地巴彦花凹陷为例[J]. 煤田地质与勘探,2020,48(01):85-95.

    YAO Haipeng,LYU Weibo,WANG Kaifeng. Key geological factors and evaluation methods for huge low-rank coalbed methane reservoirs:Taking Bayanhua depression in Erlian Basin as an example[J]. Coal Geology Exploration,2020,48(01):85-95.

    [34] 康永尚,孙良忠,张兵,等. 中国煤储层渗透率分级方案探讨[J]. 煤炭学报,2017,42(S1):186-194.

    KANG Yongshang,SUN Liangzhong,ZHANG Bing,et al. Discussion on classification of coalbed reservoir permeability in China[J]. Journal of China Coal Society,2017,42(S1):186-194.

    [35]

    HUANG Huazhou,BI Caiqin,SANG Shuxun,et al. Signature of coproduced water quality for coalbed methane development. Journal of Natural gas Science and Engineering,2017,47:34-46.

    [36] 郝慧丽,王海超,田继军,等. 阜康矿区煤层气成因探讨[J]. 煤矿安全,2021,52(9):1-9.

    HAO Huili,WANG Haichao,TIAN Jijun,et al. Discussion on genesis of coalbed methane in Fukang Mining Area[J]. Safety in Coal Mines,2021,52(9):1-9.

    [37] 李刚,杨立中,欧阳锋. 厌氧消化过程控制因素及PH和Eh的影响分析[J]. 西南交通大学学报,2001,36(5):518-521.

    LI Gang,SU Xianbo,OUYANG Feng,et al. Control factors of anaerobic digestion and effect of PH and Eh[J]. Journal of Southwest Jiaotong University,2001,36(5):518-521.

    [38] 来守超. 煤层生物甲烷产生和氧化过程及其微生物学特征研究[D]. 成都:农业部沼气科学研究所,2019.

    LAI Shouchao. Pathways and microbiological characterization of coalbed biomethane production and oxidation[D]. Chengdu:Biogas Institute of Ministry of Agriculture and Rural Affairs,2019.

    [39] 李洋. 沁水盆地南部煤储层生物甲烷与微生物群落研究[D]. 北京:中国地质大学(北京),2020.

    LI Yang. Study on biomethane and microbial Community in coal reservoir of the southern Qinshui Basin. Beijing:China University of Geosciences(Beijing),2020.

图(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  8
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-09-03
  • 网络出版日期:  2023-09-14

目录

    /

    返回文章
    返回