基于地层成拱效应的水泥环对套管应力影响规律研究

安峰辰, 苗智博, 孟思炜, 魏子莹, 张潇, 曾家明, 王晓华

安峰辰, 苗智博, 孟思炜, 魏子莹, 张潇, 曾家明, 王晓华. 基于地层成拱效应的水泥环对套管应力影响规律研究[J]. 煤田地质与勘探.
引用本文: 安峰辰, 苗智博, 孟思炜, 魏子莹, 张潇, 曾家明, 王晓华. 基于地层成拱效应的水泥环对套管应力影响规律研究[J]. 煤田地质与勘探.
AN Fengchen, MIAO Zhibo, MENG Siwei, WEI Ziying, ZHANG Xiao, ZENG Jiaming, WANG Xiaohua. Studies on the Effects of Cement Sheath on Casing Stress Based on Stratum Arching Effect[J]. COAL GEOLOGY & EXPLORATION.
Citation: AN Fengchen, MIAO Zhibo, MENG Siwei, WEI Ziying, ZHANG Xiao, ZENG Jiaming, WANG Xiaohua. Studies on the Effects of Cement Sheath on Casing Stress Based on Stratum Arching Effect[J]. COAL GEOLOGY & EXPLORATION.

 

基于地层成拱效应的水泥环对套管应力影响规律研究

基金项目: 

国家自然科学基金面上项目(52078482);山西省揭榜招标项目(20201101004)

详细信息
    作者简介:

    安峰辰,1984年生,男,山西平遥人,博士,副教授。E-mail:f.an@cup.edu.cn

    通讯作者:

    孟思炜,1988年生,男,安徽宿州人,博士,高级工程师。E-mail:mengsw@petrochina.com.cn

  • 中图分类号: TD712

Studies on the Effects of Cement Sheath on Casing Stress Based on Stratum Arching Effect

  • 摘要: 【目的】随着对天然气需求的增长以及开采技术的进步,油气钻井深度不断刷新记录。随着钻井深度的增加,地应力急剧增加,因此超深油气井套管损伤问题日益突出。为了提高套管在高地应力条件下的承载力,通常采用大壁厚高强套管来解决这个问题,但收效甚微。【方法】通过套管-水泥环-地层系统的有限元模型,证实在套管系统中成拱效应的存在以及柔性水泥环对套管的保护作用。在此基础上,通过参数分析,研究不同地层、水泥环的材料参数及其厚度对系统内应力传递机制的影响。【结果和结论】结果表明:柔性固井水泥通过允许套管附近地层发生有限变形的形式使地层能够承担地应力,进而减小套管所承担的载荷;刚性固井水泥通过限制套管附近地层发生变形来承担地应力,从而将使套管与其共同承担地应力。在前者的受力体系中,固井水泥的弹性模量越小,套管应力越小,属于主动拱效应;而在后者的受力体系中,固井水泥的弹性模量越大,套管应力越小,属于被动拱效应。然而,主动拱效应场景中的应力减小幅度远远大于被动拱场景。因此,主动拱效应对套管具有更好的保护效果,而且,在硬地层中要比软地层中明显。此外,水泥环泊松比及其厚度对套管应力也有一定的影响,但影响程度不及水泥环弹性模量。鉴于此,认为采用柔性水泥固井的条件应为地层是否具备成拱条件,即地层是否具有抗剪强度,而非地层本身的软硬程度。
    Abstract: [Objective] With the increasing demand for petroleum and gas and the development for the associated technology, the record is constantly broken in the drilling depth. The in-situ stress increases with the drilling depth, leading to severe casing failure issues in the ultra-deep wells. In order to improve the bearing capacity of casing under high in-situ stress, large-wall thick high-strength casing is traditionally employed but without evident improvement. [Methods] In this paper, the finite element model of casing-cement sheath-formation system is used to prove the presence of arching effect in the casing system and the protective effect of flexible cement sheath on the casing. On this basis, a series of parameter analyses are conducted to study the influence of the elastic moduli of strata and cement sheath and the thickness of cement sheath on the stress transferring mechanism in the system. [Results and Conclusions] The results show that the soft cement can make the formation bear the in-situ stress by allowing the formation near the casing to deform with limited movement, while hard cement resists in-situ stresses by limiting the formation deformation near the casing. In the former scenario with active arching effect, the smaller elastic modulus of the cement sheath leads to the smaller stress in the casing. In the latter scenario with passive arching effect, the larger elastic modulus of cement leads to the smaller stress in the casing. It is worth noting that the stress reduction in the casing in the scenario of active arching is more obvious than that in the scenario of passive arching. Apart from the effects of the elastic modulus of the cement, the Poisson’s ratio and thickness of the cement also has a limited influence on the casing stress, but the extent of their influence is not as significant as that of the elastic modulus of the cement sheath. In view of this, it is suggested that the selection criterion for the cement of in the ultra-deep well cementing should be whether the formation has shear strength to form arching effect rather than the stiffness of the formation.
  • [1] 谢鑫,窦正道,丁少华,等. 套管加厚对套损的影响分析[J]. 石油石化节能,2021,11(4):35–37.

    XIE Xin,DOU Zhengdao,DING Shaohua,et al. The impact analysis of casing thickening on casing damage[J]. Energy Conservation in Petroleum & Petrochemical Industry,2021,11(4):35–37.

    [2] 陈庭根,管志川. 钻井工程理论与技术[M]. 东营:石油大学出版社,2000.
    [3] 郭建明,夏宏南,范振忠, 等. 完井工程[M]. 北京:石油工业出版社,2014.
    [4] 娄琦,张广路,张丹,等. 套管抗挤毁强度主要影响因素试验研究[J]. 石油矿场机械,2012,41(6):38–42.

    LOU Qi,ZHANG Guanglu,ZHANG Dan,et al. Experimental study on influence factors of casing collapse resistance strength[J]. Oil Field Equipment,2012,41(6):38–42.

    [5] 王军,毕宗岳,张峰,等. 石油套管抗挤性能研究[J]. 焊管,2013,36(9):20–24.

    WANG Jun,BI Zongyue,ZHANG Feng,et al. Study on the collapse resistance property of oil casing[J]. Welded Pipe and Tube,2013,36(9):20–24.

    [6] 韩建增. 套管抗挤强度研究[D]. 成都:西南石油学院,2001. HAN Jianzeng. Study on collapse strength of casing[D]. Chengdu:Southwest Petroleum Institute,2021.
    [7] 韩建增,李中华,张毅,等. 磨损对套管抗挤强度影响的有限元分析[J]. 天然气工业,2003,23(5):51–53.

    HAN Jianzeng,LI Zhonghua,ZHANG Yi,et al. Finite element analysis on effect of wear on casing collapsing strength[J]. Natural Gas Industry,2003,23(5):51–53.

    [8]

    ISO/TR 10400. Petroleum and natural gas industries - Formulae and calculation for casing, tubing, drill pipe and line pipe used as casing or tubing[S]. International Standard published , 2018.

    [9] 申昭熙,冯耀荣,解学东,等. 外压作用下套管抗挤强度研究[J]. 石油矿场机械,2007,36(11):5–9.

    SHEN Zhaoxi,FENG Yaorong,XIE Xuedong,et al. Casing collapse analysis under external pressure[J]. Oil Field Equipment,2007,36(11):5–9.

    [10] 江勇,吴永莉,焦丽峰. 石油套管抗挤毁解决方案及发展[J]. 钢管,2016,45(2):59–66.

    JIANG Yong,WU Yongli,JIAO Lifeng. Solution for oil casing collapse resistance and relevant development[J]. Steel Pipe,2016,45(2):59–66.

    [11] 郭文才,刘绘新. 水泥石性能对套管外挤载荷的影响[J]. 天然气工业,2001,21(4):53–54.

    GUO Wencai,LIU Huixin. Influence of bond cement property on casing external collapse load[J]. Natural Gas Industry,2001,21(4):53–54.

    [12] 邓金根. 水泥环性质对套管外载影响的模拟试验[J]. 石油大学学报(自然科学版),1997(6):24–28.

    DENG Jingen. Simulation experiment on effects of cement mantle features on casing loading[J]. Journal of the University of Petroleum,China (Edition of Natural Science),1997(6):24–28.

    [13] 徐守余,李茂华,牛卫东. 水泥环性质对套管抗挤强度影响的有限元分析[J]. 石油钻探技术,2007,35(3):5–8.

    XU Shouyu,LI Maohua,NIU Weidong. Finite element analysis of effect of cement sheath property on casing collapsing strength[J]. Petroleum Drilling Techniques,2007,35(3):5–8.

    [14] 卢亚锋,唐庚,刘殿富,等. 深井超深井地层水泥环特性对套管载荷的影响[J]. 特种油气藏,2010,17(5):116–118. LU Yafeng,TANG Geng,LIU Dianfu,et al. Impacts of cement sheath on casing load in deep and ultra-deep wells[J]. Special Oil & Gas Reservoirs,2010,17(5):116–118.
    [15] 李军,陈勉,柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报,2005,26(6):99–103. LI Jun,CHEN Mian,LIU Gonghui,et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica,2005,26(6):99–103.
    [16] 李军,陈勉,张辉,等. 水泥环弹性模量对套管外挤载荷的影响分析[J]. 石油大学学报(自然科学版),2005(6):41–44.

    LI Jun,CHEN Mian,ZHANG Hui,et al. Effects of cement sheath elastic modulus on casing external collapse load[J]. Journal of the University of Petroleum,China (Edition of Natural Science),2005(6):41–44.

    [17] 陈勉,金衍,张广清. 石油工程岩石力学[M]. 北京:科学出版社,2008.
    [18] 李勇,刘硕琼,王兆会. 水泥环厚度及力学参数对其应力的影响[J]. 石油钻采工艺,2010,32(4):37–40.

    LI Yong,LIU Shuoqiong,WANG Zhaohui. Effect of cement thickness and its mechanical parameters an cement stress[J]. Oil Drilling & Production Technology,2010,32(4):37–40.

    [19] 王耀锋,李军强,杨小辉,等. 水泥环弹性模量和泊松比与地层性质匹配关系研究[J]. 石油钻探技术,2008,36(6):25–29.

    WANG Yaofeng,LI Junqiang,YANG Xiaohui,et al. Research on matching cement’s elastic modulus and Poisson’s ratio with formation lithology[J]. Petroleum Drilling Techniques,2008,36(6):25–29.

    [20] 陈朝伟,殷有泉. 水泥环对套管载荷影响的理论研究[J]. 石油学报,2007,28(3):141–144.

    CHEN Zhaowei,YIN Youquan. Theoretical study on effect of cement sheath on casing load[J]. Acta Petrolei Sinica,2007,28(3):141–144.

    [21] 欧阳勇,刘汉斌,白明娜,等. 苏里格气田小井眼套管开窗侧钻水平井钻完井技术[J]. 油气藏评价与开发,2021,11(1):129–134.

    OUYANG Yong,LIU Hanbin,BAI Mingna,et al. Drilling and completion of sidetracking horizontal well with small hole casing in Sulige Gas Field[J]. Petroleum Reservoir Evaluation and Development,2021,11(1):129–134.

    [22]

    TIEN H J. A Literature Study of the Arching Effect[D]. Massachusetts: Massachusetts Institute of Technology, 1996.

    [23]

    TERZAGHI K. Theoretical soil mechanics[M]. John Wiley & Sons,1943.

    [24] 董捷,张永兴,吴汉辉. 考虑滑体法向应力突变的阻滑桩成拱效应研究[J]. 地质与勘探,2008(6):97–102. DONG Jie,ZHANG Yongxing,WU Hanhui. Soil arching effect among anti-slide piles with consideration of normal stress mutability in sliding mass[J]. Geology and Exploration,2008(6):97–102.
    [25] 谷拴成,杨超凡,王盼,等. 条带开采煤柱支承压力与塑性区分布规律研究[J]. 矿业安全与环保,2021,48(2):1–6.

    GU Shuancheng,YANG Chaofan,WANG Pan,et al. Study on distribution law of supporting pressure and plastic zone of coal pillar in strip mining[J]. Mining Safety & Environmental Protection,2021,48(2):1–6.

    [26] 曹胜涛. 土拱效应的数值模拟研究[D]. 北京:北京工业大学,2012. CAO Shengtao. Numerical simulation of soil arching effect[D]. Beijing:Beijing University of Technology,2012.
    [27] 黄博杰. 考虑圆拱效应与应力集中效应的桩孔自立稳定深度研究[D]. 重庆:重庆大学,2017. HUANG Bojie. Study on self-supporting stability depth of pile hole considering circular arch effect and stress concentration effect[D]. Chongqing:Chongqing University,2017.
    [28] 程昌钧,朱媛媛. 弹性力学[M]. 上海:上海大学出版社,2005.
    [29] 曾德智,林元华,李双贵,等. 非均匀地应力下水泥环界面应力分布规律研究[J]. 石油钻探技术,2007,35(1):32–34. ZENG Dezhi,LIN Yuanhua,LI Shuanggui,et al. Study of stress distribution of cement sheath cross section under non-uniform formation stress[J]. Petroleum Drilling Techniques,2007,35(1):32–34.
    [30] 安峰辰,张飞扬,易浩,等. 交变应力对套管损伤机理的影响[J]. 煤田地质与勘探,2021,49(1):143–150.

    AN Fengchen,ZHANG Feiyang,YI Hao,et al. Effects of alternating stress on casing damage mechanism[J]. Coal Geology & Exploration,2021,49(1):143–150.

    [31] 徐芝纶. 弹性力学(第二版) [M]. 北京:人民教育出版社,1982.
计量
  • 文章访问数:  57
  • HTML全文浏览量:  6
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-29
  • 录用日期:  2024-08-06

目录

    /

    返回文章
    返回