Discovery and implications of the large deep coalbed methane in Shenfu gas field
-
摘要: 【背景】鄂尔多斯盆地东缘神府区块历经近20年非常规天然气勘探,于2023年发现了千亿方深部煤层气储量。深部煤层气勘探初期,面临地质规律认识不足、压裂技术不成熟、排采工艺经验欠缺等难题。【方法和结果】通过管理和技术创新,双轮驱动,取得了良好的勘探成效。管理上,开创性施行了深部煤层气、致密砂岩气“互补式”和“立体式”勘探,打破专业壁垒、组织壁垒和业务壁垒,坚持“一井一策”,高效推进“钻-压-排”一体化;技术上,创新提出“微相控煤、源热控烃、温压控态”的深部煤层气成藏模式,建立选区标准并落实富集区,形成了地质-工程甜点评价技术,并探索应用复合立体缝网改造技术实现煤储层的改造体积最大化和渗流能力最优化,因地制宜地提出“快速返排-多级控压-阶梯稳步提产”的排采思路,形成欠饱和井、饱和井两大类排采制度,明确不同排采阶段的目标原则,建立3类井底流压下降模式,支撑探井达产稳产。【意义】通过一系列的管理和技术创新,神府大气田成功发现,展示了鄂尔多斯盆地东缘深部煤层气勘探开发的广阔前景,对我国类似盆地资源勘探和非常规油气增储上产具有重要指导意义。Abstract: [Background] After nearly 20 years of unconventional natural gas exploration in the Shenfu area on the eastern margin of the Ordos Basin, a deep coalbed methane reserve of 100 billion cubic meters was discovered in 2023. In the early stage of deep coalbed methane exploration, it faced challenges such as insufficient geological understanding, immature fracturing technology, and lack of experience in drainage technology. [Methods and Results] Through management and technological innovation, driven by both wheels, good results have been achieved. In terms of management, innovative measures were taken to implement "complementary" and "vertical" exploration of deep coal seams and tight sandstone gas, breaking down professional barriers, organizational barriers, and business barriers, adhering to the principle of "one well, one policy", and efficiently promoting the integration of "drilling-fracturing-drainage". Technically, the innovative deep coalbed methane accumulation model of "microfacies-controlled coal, source heat-controlled hydrocarbon, temperature and pressure-controlled existence state" was proposed, and selection criteria and enrichment areas were established, forming a geological engineering sweet spot evaluation technology. The application of composite three-dimensional fracture network transformation technology was explored to maximize the transformation volume of coal reservoirs and optimize the seepage capacity. [Significance] The drainage ideas of "rapid backflow-multi-level pressure control-steady stepped production increase" were proposed according to local conditions, forming Undersaturated well and saturated well two major types of drainage systems, clarifying the target principles of different drainage stages, and establishing three types of bottomhole flow pressure decline models, and supporting exploration wells to achieve and stabilize production.
-
-
[1] 秦勇, 申建, 沈玉林. 叠置含气系统共采兼容性:煤系"三气" 及深部煤层气开采中的共性地质问题[J]. 煤炭学报, 2016, 41(1):14-23. QIN Yong, SHEN Jian, SHEN Yulin. Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society, 2016, 41(1):14-23.
[2] 秦勇. 中国煤系气共生成藏作用研究进展[J]. 天然气工业, 2018, 38(4):26-36. QIN Yong. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry, 2018, 38(4):26-36.
[3] 杨兆彪, 秦勇, 陈世悦, 等. 多煤层储层能量垂向分布特征及控制机理[J]. 地质学报, 2013, 87(1):139-144. YANG Zhaobiao, QIN Yong, CHEN Shiyue, et al. Controlling mechanism and vertical distribution characteristics of reservoir energy of multi-coalbeds[J]. Acta Geologica Sinica, 2013, 87(1):139-144.
[4] 刘可胜, 刘俊, 崔凡, 等. 淮南煤系地层非常规天然气岩石物理敏感参数研究[J]. 中国煤炭, 2021, 47(2):31-36. LIU Kesheng, LIU Jun, CUI Fan, et al. Study on the petrophysical sensitive parameters of unconventional gas in Huainan coal measure strata[J]. China Coal, 2021, 47(2):31-36.
[5] 秦勇. 共生理论框架下的煤系气共生体系研究进展与思考[J]. 中国煤炭地质, 2020, 32(9):26-32. QIN Yong. Progress in research and thinking on coal measures gas (CMG) paragenetic system based on paragenesis theory[J]. Coal Geology of China, 2020, 32(9):26-32.
[6] 毕彩芹, 胡志方, 汤达祯, 等. 煤系气研究进展与待解决的重要科学问题[J]. 中国地质, 2021, 48(2):402-423. BI Caiqin, HU Zhifang, TANG Dazhen, et al. Research progress of coal measure gas and some important scientific problems[J]. Geology in China, 2021, 48(2):402-423.
[7] 邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 2019, 46(3):433-442. ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development, 2019, 46(3):433-442.
[8] 马晓强, 邹婧芸, 祝彦贺. 鄂尔多斯盆地东北缘临兴东区断阶带致密气富集规律研究[J]. 非常规油气, 2023, 10(3):1-7. MA Xiaoqiang, ZOU Jingyun, ZHU Yanhe. Study on enrichment law of tight gas in the fault step zone of Linxing east block, northeast margin of Ordos Basin[J]. Unconventional Oil & Gas, 2023, 10(3):1-7.
[9] 何发岐, 董昭雄. 深部煤层气资源开发潜力:以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质, 2022, 43(2):277-285. HE Faqi, DONG Zhaoxiong. Development potential of deep coalbed methane:A case study in the Daniudi gas field, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(2):277-285.
[10] 张凯亮. 鄂尔多斯盆地煤系天然气资源潜力分析及合勘共采探讨[C]//2016年煤层气学术研讨会论文集. 北海, 2016:415-420. [11] 宋岩, 柳少波, 马行陟, 等. 中高煤阶煤层气富集高产区形成模式与地质评价方法[J]. 地学前缘, 2016, 23(3):1-9. SONG Yan, LIU Shaobo, MA Xingzhi, et al. Research on formation model and geological evaluation method of the middle to high coal rank coalbed methane enrichment and high production area[J]. Earth Science Frontiers, 2016, 23(3):1-9.
[12] 杨华, 张军, 王飞雁, 等. 鄂尔多斯盆地古生界含气系统特征[J]. 天然气工业, 2000, 20(6):7-11. YANG Hua, ZHANG Jun, WANG Feiyan, et al. Characteristics of Paleozoic gas system in e'erduosi basin[J]. Natural Gas Industry, 2000, 20(6):7-11.
[13] 马新华. 鄂尔多斯盆地上古生界深盆气特点与成藏机理探讨[J]. 石油与天然气地质, 2005, 26(2):230-236. MA Xinhua. Discussion on characteristics and reservoiring mechanism of deep basin gas in Upper Paleozoic in Ordos Basin[J]. Oil & Gas Geology, 2005, 26(2):230-236.
[14] 范俊佳, 琚宜文, 侯泉林, 等. 不同变质变形煤储层孔隙特征与煤层气可采性[J]. 地学前缘, 2010, 17(5):325-335. FAN Junjia, JU Yiwen, HOU Quanlin, et al. Pore structure characteristics of different metamorphic-deformed coal reservoirs and its restriction on recovery of coalbed methane[J]. Earth Science Frontiers, 2010, 17(5):325-335.
[15] 何自新, 付金华, 席胜利, 等. 苏里格大气田成藏地质特征[J]. 石油学报, 2003, 24(2):6-12. HE Zixin, FU Jinhua, XI Shengli, et al. Geological features of reservoir formation of Sulige gas field[J]. Acta Petrolei Sinica, 2003, 24(2):6-12.
[16] 付金华, 魏新善, 罗顺社, 等. 庆阳深层煤成气大气田发现与地质认识[J]. 石油勘探与开发, 2019, 46(6):1047-1061. FU Jinhua, WEI Xinshan, LUO Shunshe, et al. Discovery and geological knowledge of the large deep coal-formed Qingyang Gas Field, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(6):1047-1061.
[17] 张兵, 周龙刚, 王应斌, 等. 鄂尔多斯盆地东缘临兴地区致密储层产出水赋存特征及开发启示[J]. 非常规油气, 2022, 9(1):90-97. ZHANG Bing, ZHOU Longgang, WANG Yingbin, et al. Occurrence characteristics and development enlightenment of produced water in tight reservoir in Linxing area, eastern margin of Ordos Basin[J]. Unconventional Oil & Gas, 2022, 9(1):90-97.
[18] 徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探, 2022, 50(3):1-14. XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration, 2022, 50(3):1-14.
[19] 祝彦贺, 赵志刚, 张道旻, 等. 鄂尔多斯盆地神府地区致密气成藏条件及成藏规律[J]. 中国海上油气, 2022, 34(4):55-64. ZHU Yanhe, ZHAO Zhigang, ZHANG Daomin, et al. Accumulation conditions and accumulation laws of tight gas in Shenfu area, northeast of Ordos Basin[J]. China Offshore Oil and Gas, 2022, 34(4):55-64.
[20] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1):115-130. XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1):115-130.
[21] 张家騛, 王若谷, 武渝, 等. 延安气田子长地区盒8段致密砂岩气岩心覆压孔渗变化规律[J]. 非常规油气, 2023, 10(4):39-46. ZHANG Jiafei, WANG Ruogu, WU Yu, et al. Change rule of overburden porosity and permeability of tight sandstone gas core of He8 section of Zichang Area in Yan'an Gasfield[J]. Unconventional Oil & Gas, 2023, 10(4):39-46.
[22] 徐继发, 王升辉, 孙婷婷, 等. 世界煤层气产业发展概况[J]. 中国矿业, 2012, 21(9):24-28. XU Jifa, WANG Shenghui, SUN Tingting, et al. The introduction of world CBM development[J]. China Mining Magazine, 2012, 21(9):24-28.
[23] 朱光辉, 李本亮, 李忠城, 等. 鄂尔多斯盆地东缘非常规天然气勘探实践及发展方向:以临兴-神府气田为例[J]. 中国海上油气, 2022, 34(4):16-29. ZHU Guanghui, LI Benliang, LI Zhongcheng, et al. Practices and development trend of unconventional natural gas exploration in eastern margin of Ordos Basin:Taking Linxing-Shenfu gas field as an example[J]. China Offshore Oil and Gas, 2022, 34(4):16-29.
[24] 朱光辉. 鄂尔多斯盆地东缘多层叠置低渗致密气藏勘探开发技术突破及规模应用[R]. 北京:中联煤层气, 2022 [25] 魏云迅, 李聪聪, 乔军伟, 等. 神府矿区洁净煤划分及绿色开发建议[J]. 中国煤炭, 2019, 45(11):79-83. WEI Yunxun, LI Congcong, QIAO Junwei, et al. Clean coal grading and green development proposal of Shenfu mining area[J]. China Coal, 2019, 45(11):79-83.
[26] 聂文杰, 赵晓光, 杜华栋, 等. 榆神府矿区不同导水裂隙发育对地表土壤性质的影响[J]. 西安科技大学学报, 2021, 41(3):464-473. NIE Wenjie, ZHAO Xiaoguang, DU Huadong, et al. Influence of development of different water-conducting fissures on the topsoil properties in Yushenfu mining area[J]. Journal of Xi'an University of Science and Technology, 2021, 41(3):464-473.
[27] 蒋永平, 杨松. 鄂尔多斯盆地东缘延川南区块煤层气井排水采气新工艺[J]. 油气藏评价与开发, 2021, 11(3):384-389. JIANG Yongping, YANG Song. New technology of dewatering gas recovery for CBM wells in Southern Yanchuan Block, eastern margin of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3):384-389.
计量
- 文章访问数: 55
- HTML全文浏览量: 2
- PDF下载量: 23