Study on mechanism and prevention technology mode of thick-hard roof induced punching in composite key stratum
-
摘要: 【目的】厚硬顶板是诱发煤矿冲击地压、矿震等灾害的关键因素,其中煤层顶板发育有复合关键层厚硬顶板条件下灾害更为严重,揭示复合关键层厚硬顶板诱冲机制,构建防治技术模式迫在眉睫。【方法】运用物理相似模拟和力学分析等方法,建立复合关键层硬顶板和其非协同破断判识方法,揭示复合关键层厚硬顶板诱冲机制,优选防冲技术模式。【结果和结论】结果表明:(1)复合关键层厚硬顶板呈现“大-小”周期来压规律,来压期间声发射频次和微震能量分别为非来压的5.3倍与7.3倍;上、下位关键层厚硬顶板同步破断扰动叠加,叠合“周期”和“见方”来压效应诱发大型冲击地压灾害。(2)建立了以中性轴线为基础的复合关键层判识模型,两层及以上关键层厚硬顶板形成复合关键层前提是梁模型横截面上剪切应力不超过对应的抗剪强度。(3)形成了“悬臂梁”和“砌体梁”两种模式下合理破断线距离定量判识方法,提出了复合关键层厚硬顶板上、下单层和双层协同3种水力压裂卸压技术模式。(4)分析显示下位关键层压裂主要改变了厚硬顶板关键层完整性和强度,缩短了来压步距,无法控制上位关键层“拱壳”结构大能量冲击地压;上位关键层压裂控制“大周期”破断扰动载荷,减弱了复合关键层耦合效应,大幅降低冲击地压危险性,是冲击地压主控层位,“上-下位”关键层协同压裂为最优卸压防冲模式。该研究成果将为复合厚硬顶板冲击地压地压、矿震灾害区域的精准防治提供重要依据。Abstract: The key stratum of thick-hard roof is key factor to induce coal mine impact, mine earthquake and other disasters. The disaster is more serious under the condition that the coal seam roof has the key stratum of composite thick-hard roof, which is easy to induce large-scale rock burst disaster. Aiming at the rock burst disaster induced by the composite key stratum of thick-hard roof, the mechanical model of the composite key stratum of thick-hard roof is established, the stress equation of the tensile and compressive zone of the composite key stratum roof is constructed, and the identification method of the composite key stratum roof is given. Based on the typical composite key strata roof development working face as the background, using theoretical analysis and similar simulation, reveals the composite key strata roof strata breaking characteristics, reveals the upper and lower key strata roof synchronous breaking release dynamic load disturbance superposition, induced impact disaster mechanism. The non-cooperative fracture mechanics identification conditions of the composite key layer of 'cantilever beam' and 'masonry beam' are put forward, the reasonable distance of the fracture line of the upper and lower key layers is quantitatively determined, and the prevention and control technology mode of single-layer and double-layer cooperative staged fracturing weakening and pressure relief transformation of the upper and lower key layers is created. The characteristics of stress, deformation and surrounding rock failure under different fracturing modes are studied. The disaster-inducing mechanism of thick and hard roof of composite key strata in upper and lower key strata is pointed out, and the fracture relationship of overlying strata under different fracturing modes is analyzed. The results show that the fracturing of the lower key layer mainly changes the thick-hard roof.
-
Keywords:
- thick-hard roof /
- rock burst /
- composite key layer /
- synergy weakening /
- staged fracturing
-
-
[1] 王家臣.基于采动岩层控制的煤炭科学开采[J].采矿与岩层控制工程学报, 2019, 24(2):34-41. WANG Jiachen.Sustainable coal mining based on mining ground control[J].Journal of Mining and Strata Control Engineering, 2019, 24(2):34-41.
[2] 王兆会, 唐岳松, 李猛, 等. 深埋薄基岩采场覆岩冒落拱与拱脚高耸岩梁复合承载结构形成机理与应用[J]. 煤炭学报, 2023, 48(2):563-575. WANG Zhaohui, TANG Yuesong, LI Meng, et al. Development and application of overburden structure composed of caving arch and towering roof beam in deep longwall panel with thin bedrock[J]. Journal of China Coal Society, 2023, 48(2):563-575.
[3] 钱鸣高, 许家林. 煤炭开采与岩层运动[J]. 煤炭学报, 2019, 44(4):973-984. QIAN Minggao, XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society, 2019, 44(4):973-984.
[4] 柴敬, 雷武林, 杜文刚, 等. 分布式光纤监测的采场巨厚复合关键层变形试验研究[J]. 煤炭学报, 2020, 45(1):44-53. CHAI Jing, LEI Wulin, DU Wengang, et al. Deformation of huge thick compound key layer in stope based on distributed optical fiber sensing monitoring[J]. Journal of China Coal Society, 2020, 45(1):44-53.
[5] DU Wenfeng, PENG Suping, ZHU Guowei, et al. Time-lapse geophysical technology-based study on overburden strata changes induced by modern coal mining[J]. International Journal of Coal Science & Technology, 2014, 1(2):184-191.
[6] 茅献彪, 缪协兴, 钱鸣高.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学, 1999, 20(2):1-4. MAO Xianbiao, MIAO Xiexing, QIAN Minggao.Calculation for fracture span of conpound key strata in mining rocks[J].Rock and Soil Mechanics, 1999, 20(2):1-4.
[7] 缪协兴, 茅献彪, 孙振武, 等. 采场覆岩中复合关键层的形成条件与判别方法[J]. 中国矿业大学学报, 2005, 34(5):547-550. MIAO Xiexing, MAO Xianbiao, SUN Zhenwu, et al. Formation conditions of compound key strata in mining overlayer strata and its discriminance[J]. Journal of China University of Mining & Technology, 2005, 34(5):547-550.
[8] 许家林, 鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报, 2011, 30(8):1547-1556. XU Jialin, JU Jinfeng. Structural morphology of key stratum and its influence on strata behaviors in fully-mechanized face with super-large mining height[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8):1547-1556.
[9] 闫少宏, 尹希文, 许红杰, 等. 大采高综采顶板短悬臂梁-铰接岩梁结构与支架工作阻力的确定[J]. 煤炭学报, 2011, 36(11):1816-1820. YAN Shaohong, YIN Xiwen, XU Hongjie, et al. Roof structure of short cantilever-articulated rock beam and calculation of support resistance in full-mechanized face with large mining height[J]. Journal of China Coal Society, 2011, 36(11):1816-1820.
[10] 张培鹏, 蒋力帅, 刘绪峰, 等. 高位硬厚岩层采动覆岩结构演化特征及致灾规律[J]. 采矿与安全工程学报, 2017, 34(5):852-860. ZHANG Peipeng, JIANG Lishuai, LIU Xufeng, et al. Mining-induced overlying strata structure evolution characteristics and disaster-triggering under high level hard thick strata[J]. Journal of Mining & Safety Engineering, 2017, 34(5):852-860.
[11] 潘红宇, 李树刚, 张涛伟, 等. Winkler地基上复合关键层模型及其力学特性[J]. 中南大学学报(自然科学版), 2012, 43(10):4050-4056. PAN Hongyu, LI Shugang, ZHANG Taowei, et al. Composite key stratum module of Winkler foundation and its mechanical properties[J]. Journal of Central South University (Science and Technology), 2012, 43(10):4050-4056.
[12] ZHU Cheng, YUAN Yong, YUAN Chaofeng, et al. Study on the structural forms of the key strata in the overburden of a stope during periodic weighting and the reasonable working resistance of the support[J]. Energy Science & Engineering, 2020, 8(7):2599-2620.
[13] 于斌, 杨敬轩, 刘长友, 等. 大空间采场覆岩结构特征及其矿压作用机理[J]. 煤炭学报, 2019, 44(11):3295-3307. YU Bin, YANG Jingxuan, LIU Changyou, et al. Overburden structure and mechanism of rock pressure in large space stope[J]. Journal of China Coal Society, 2019, 44(11):3295-3307.
[14] 王海洋. 复合坚硬顶板变形破断特征及对矿压显现的影响规律[D]. 重庆:重庆大学, 2017. WANG Haiyang. Deformation and breaking characteristics of compound hard roof and its influence on pressure behavior[D]. Chongqing:Chongqing University, 2017.
[15] 杨俊哲, 郑凯歌, 王振荣, 等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报, 2020, 45(10):3371-3379. YANG Junzhe, ZHENG Kaige, WANG Zhenrong, et al. Technology of weakening and danger-breaking dynamic disasters by hard roof[J]. Journal of China Coal Society, 2020, 45(10):3371-3379.
[16] 郑凯歌, 杨俊哲, 李彬刚, 等. 基于垮落充填的坚硬顶板分段压裂弱化解危技术[J]. 煤田地质与勘探, 2021, 49(5):77-87. ZHENG Kaige, YANG Junzhe, LI Bingang, et al. Collapse filling-based technology of weakening and danger-solving by staged fracturing in hard roof[J]. Coal Geology & Exploration, 2021, 49(5):77-87.
[17] 高瑞. 远场坚硬岩层破断失稳的矿压作用机理及地面压裂控制研究[D]. 徐州:中国矿业大学, 2018. GAO Rui. The Mechanism of Ground Pressure Induced by the Breakage of Far-Field Hard Strata and the Control Technology of Ground Fracturing[D]. Xuzhou:China University of Mining and Technology, 2018. [18] 郑凯歌, 袁亮, 杨森, 等. 基于分区弱化的复合坚硬顶板冲击地压分段压裂区域防治研究[J]. 采矿与安全工程学报, 2023, 40(2):322-333. ZHENG Kaige, YUAN Liang, YANG Sen, et al. Study on prevention and control of rock burst staged fracturing area of composite hard roof based on zoning weakening[J]. Journal of Mining & Safety Engineering, 2023, 40(2):322-333.
[19] 吴学明, 马小辉, 吕大钊, 等. 彬长矿区"井上下" 立体防治冲击地压新模式[J]. 煤田地质与勘探, 2023, 51(3):19-26. WU Xueming, MA Xiaohui, LYU Dazhao, et al. A new model of surface and underground integrated three-dimensional prevention and control of rock burst in Binchang Mining Area[J]. Coal Geology & Exploration, 2023, 51(3):19-26.
[20] 张有乾. 考虑层间剪切特性复合顶板失稳机理及控制[D]. 徐州:中国矿业大学, 2015. ZHANG Youqian. Instability and Control Mechanism of Layered Compound Roof in Consideration of Shear Behavior of Bedding Plane[D]. Xuzhou:China University of Mining and Technology, 2015.
[21] LI Zhu, XU Jialin, YU Shengchao, et al. Mechanism and prevention of a chock support failure in the longwall top-coal caving faces:A case study in Datong Coalfield, China[J]. Energies, 2018, 11(2):288.
[22] WANG Feng, XU Jialin, XIE Jianlin, et al. Mechanisms influencing the lateral roof roadway deformation by mining-induced fault population activation:A case study[J]. International Journal of Oil, Gas and Coal Technology, 2016, 11(4):411.
-
期刊类型引用(17)
1. 王淑璇,王强民,曹煜,王浩. 榆横矿区典型矿井含水层水力联系辨识. 能源与环保. 2025(02): 101-105+111 . 百度学术
2. 马国逢,刘洋,杨建,王强民. 蒙陕深埋煤层首采工作面顶板富水性和涌水量差异研究. 煤炭工程. 2024(02): 87-91 . 百度学术
3. 丁莹莹,尹尚先,连会青,卜昌森,刘伟,夏向学,周旺. 基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究. 中国安全生产科学技术. 2024(03): 110-117 . 百度学术
4. 任海帆. 鄂尔多斯盆地煤层气开发井壁稳定性技术研究. 中国高新科技. 2024(07): 123-125 . 百度学术
5. 邓启锐,高建峰,刘飞,徐士哲,许珂,王杰,南忠辉. 基于不完整井非稳定运动的立井井筒涌水量预测研究. 煤炭工程. 2024(08): 172-176 . 百度学术
6. 付德渊,樊江伟,乌阳嘎,黄海鱼,白志君,李哲. 基于AHP的东胜煤田煤层顶板充水强度分区评价. 陕西煤炭. 2024(09): 58-63+99 . 百度学术
7. 周振方,董书宁,董阳,罗生虎,薛建坤,王治宙,王淑璇,尚宏波,王甜甜,王昱同,王同. 蒙陕接壤区典型煤层开采顶板周期性变形破坏及涌水响应特征. 煤田地质与勘探. 2024(08): 101-110 . 本站查看
8. 贾继平,李赵岩,李涛,田超超. 黄陵一号煤矿814工作面采前防治水安全评价. 陕西煤炭. 2024(10): 91-95 . 百度学术
9. 陈云民,李媛,苏士杰,吴永辉,周新河. 基于小波变换的煤矿区地下水位动态变化特征分析. 煤炭工程. 2024(S1): 153-162 . 百度学术
10. 杨建,王皓,王强民,张溪彧,王甜甜. 蒙陕接壤区矿井水中典型污染组分特征及来源. 煤炭学报. 2023(04): 1687-1696 . 百度学术
11. 王林威,靖娟,尚文绣. 矿井大量涌水地区多水源联合配置. 水资源与水工程学报. 2023(03): 37-45+54 . 百度学术
12. 刘慧,刘桂芹,宁殿艳,樊娟,陈卫明. 基于VMD-DBN的矿井涌水量预测方法. 煤田地质与勘探. 2023(06): 13-21 . 本站查看
13. 孙刚友,胡清珍,康钦容,夏缘帝,袁威,张卫中. 基于大井法和地下水模型系统数值模拟方法的某矿坑涌水量预测对比分析. 科学技术与工程. 2023(21): 9024-9031 . 百度学术
14. 王皓,周振方,杨建,赵春虎,曹煜,冯龙飞,尚宏波,王甜甜,王昱同,薛建坤. 蒙陕接壤区典型煤层开采地下水系统扰动的定量表征. 煤炭科学技术. 2023(07): 83-93 . 百度学术
15. 康占忠,刘洋. 榆神矿区水文地球化学特征精细分层研究. 煤炭技术. 2022(08): 72-75 . 百度学术
16. 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律. 煤田地质与勘探. 2022(12): 152-158 . 本站查看
17. 周新河,翁明月,苏士杰,李广疆. 近距离煤层顶板水害立体防控技术研究——以蒙陕深部矿井为例. 煤炭科学技术. 2021(12): 165-172 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 22
- HTML全文浏览量: 5
- PDF下载量: 2
- 被引次数: 20