Discussion on the coal measure gas co-mining method by the stratified pressure relief in surface wells
-
摘要: 为了进一步认识制约煤系气合采的因素,提高煤系合层排采各产层的产气贡献,分别从动力、通道和气源条件出发,分析了煤系气合采的必备因素。基于改变地应力状态提高储层导流能力以及分层改变储层流体压力,满足多层合采动力条件的原理,提出了地面井分层卸压的煤系气合采方式。该方式通过在地面进行定向钻井,在目标储层中进行高压水射流作业,人工创造卸压空间(缝、槽、穴等),改变地应力状态,降低有效应力伤害,增加储层导流通道的数量和开度,提高目标储层压降传递速率。待储层压力降至符合煤系气合采动力条件时进行合层排采,从而提高煤系合采各产气层的产气贡献。相较于常规增产改造措施,此方式能够减少煤系气储层在有效应力作用下的储层伤害,且有助于提高储层压降传递效率,增强煤系气的解吸和扩散,降低多层煤系气合采过程中的层间干扰。在以上研究基础上,认为地面井分层卸压的合采方式主要适用于储层地应力大、产层间距小的煤系气储层,且有望在薄互层煤系气储层增产改造及层间干扰严重的叠合共生煤系储层开发领域进行应用推广。Abstract: In order to further understand the restrictive factors of coal measure gas co-mining, and to improve the gas production contribution of each production layer of coal measure gas co-mining, based on power, passage and gas source conditions, the necessary factors of coal measure gas co-mining were analyzed. Based on the principle of changing the crustal stress state to improve the reservoir conductivity and changing the reservoir fluid pressure in different layers to meet the dynamic conditions of multi-layer co-mining, the coal measure gas development method by stratified pressure relief in surface wells was proposed. Through directional drilling on the surface, high-pressure water jet operation is carried out in the target reservoir, pressure relief spaces (slots, grooves, holes) are artificially created, the stress state is changed, with the effective stress damage the being reduced, and then the number and opening of reservoir diversion channels are increased, and the fluid pressure drop of the target reservoir is finally induced. When the reservoir pressure drops to meet the dynamic conditions of coal measure gas combined production, the combined layer drainage will be carried out, realize the coordinated multi-layer gas combined production, and improve the gas production contribution of each production layer of coal measure gas combined production. Compared with conventional reconstruction technologies, the method can reduce the damage of coal measure gas reservoirs under the effective stress action, improve the efficiency of inducing the pressure to promote the desorption and diffusion of coal measure gas, and reduce interlayer interference. On the basis of the above research, it is considered that the development mode of surface well delamination relief is mainly suitable for the coal measure gas reservoir with large in-situ stress and small spacing between production layers, and it is expected to be applied in the field of thin interlayer gas reservoir stimulation and the development of symbiotic coal measure reservoir with serious interlayer interference.
-
-
[1] OUYANG Yonglin,TIAN Wenguang,SUN Bin,et al. Accumulation characteristics and exploration strategies of coal measure gas in China[J]. Natural Gas Industry B,2018,5(5):444-451.
[2] QIN Yong. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry B,2018,5(5): 466-474.
[3] 陈尚斌,侯晓伟,屈晓荣,等. 煤系气叠置含气系统与天然气成藏特征——以沁水盆地榆社—武乡示范区为例[J]. 天然气工业,2023,43(05):12-22. CHEN Shangbin,HOU Xiaowei,QU Xiaorong,et al. Superimposed gas-bearing system of coal measure gas and its natural gas accumulation characteristics: A case study of Yushe-Wuxiang demonstration area in the Qinshui Basin[J]. Natural Gas Industry,2023,43(05):12-22.
[4] LIU Lingli,WANG Jianjun,SU Penghui,et al. Experimental study on interlayer interference of coalbed methane reservoir under different reservoir physical properties and pressure systems[J]. Journal of Petroleum Exploration and Production Technology,2022,12(12):3263-3274.
[5] JIA Li,PENG Shoujian,XU Jiang,et al. Interlayer interference during coalbed methane coproduction in multilayer superimposed gas-bearing system by 3D monitoring of reservoir pressure: An experimental study[J]. Fuel,2021,304:121-472.
[6] WANG Chaowen,JIA Chunsheng,PENG Xiaolong,et al. Effects of wellbore interference on concurrent gas production from multi-layered tight sands:A case study in eastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering,2019,179:707-715.
[7] 胡进奎,杜文凤. 浅析煤系地层“三气合采”可行性[J]. 地质论评,2017,63(增刊1):83-84. HU Jinkui,DU Wenfeng : Analysis on Feasibility of Three Gas Co-Exploration in Coal Measure Strata Keywords:Coal measure strata; Coalbed methane; Shale gas; Tight sandstone gas; “Three gas co-exploration”[J]. Geological Review,2017,63(Sup.1):83-84.
[8] 魏虎超,封蓉,张亮. 煤系多气合采层间干扰特征数值模拟研究[C]//2020油气田勘探与开发国际会议. 成都:2020. [9] 许耀波.煤层气井合层开发层间干扰分析与合采方法探讨——以平顶山首山一矿为例[J]. 煤田地质与勘探,2021,49(3):112-117. XU Yaobo. Analysis of interlayer interference in combined development of coalbed methane wells and discussion on combined production methods:A case study of Shoushan No.1 Coal Mine in Pingdingshan[J]. Coal Geology & Exploration,2021,49(3):112-117.
[10] 李国璋,秦勇. 煤系气合采兼容性物理模拟:以鄂尔多斯盆地临兴区块为例[C]//第十六届全国古地理学及沉积学学术会议. 西安:2021. [11] DAI Shijie,XU Jiang,JIA Li,et al. On the 3D fluid behavior during CBM coproduction in a multi pressure system:Insights from experimental analysis and mathematical models[J]. Energy,2023,283:129088.
[12] 全方凯. 叠置含煤层气系统合采储层动态及层间干扰量化判识[D]. 徐州:中国矿业大学,2020. QUAN Fangkai. Reservoir dynamics and interlayer interference quantification during methane co-production from superimposed CBM system[D]. Xuzhou:China University of Mining & Technology,2023. [13] 张和伟,申建,李可心,等. 鄂尔多斯盆地临兴西区深煤层地应力场特征及应力变化分析[J]. 地质与勘探,2020,56(04):809-818. Zhang Hewei,Shen Jian,Li Kexin,et al. Characteristics of the in - situ stress field and stress change of deep coal seams in the western Linxing area,Ordos Basin[J]. Geology and Exploration,2020,56(4) :0809-0818. [14] 朱光辉,李本亮,李忠城,等. 鄂尔多斯盆地东缘非常规天然气勘探实践及发展方向——以临兴-神府气田为例[J]. 中国海上油气,2022,34(4):16-29+261. ZHU Guanghui,LI Benliang,LI Zhongcheng,et al. Practices and development trend of unconventional natural gas exploration in eastern margin of Ordos Basin:Taking Linxing-Shenfu gas field as example[J]. China Offshore Oil and Gas,2022,34(4):16-29. [15] 苏育飞,宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质,2023,35(5):46-57. SU Yufei,SONG Ru. Study on geological characteristics of deep CBM in Yushewu block,Qinshui Basin and evaluation of transformability[J]. China Coal Geology,2023,35(5):46-57.
[16] LI Rui,WANG Shengwei,LYU Shuaifeng,et al. Geometry and filling features of hydraulic fractures in coalbed methane reservoirs based on subsurface observations[J]. Rock Mechanics and Rock Engineering,2020,53(5):2485-2492.
[17] 李瑞,卢义玉,葛兆龙,等. 地面井卸压的煤层气开发新模式[J]. 天然气工业,2022,42(07):75-84. LI Rui,LU Yiyu,GE Zhaolong,et al. A new CBM development mode:Surface well pressure relief[J]. Natural Gas Industry,2022,42(7):75-84.
[18] 桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(07):2531-2543. SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7) :2531-2543.
[19] 郑司建,桑树勋. 煤层气勘探开发研究进展与发展趋势[J].石油物探,2022,61(06):951-962 . ZHENG Sijian,SANG Shuxun. Progress of research on coalbed methane exploration and development[J].Geophysical Prospecting for Petroleum,2022,61(6):951-962
[20] 田守嶒,黄中伟,李根生,等. 径向井复合脉动水力压裂煤层气储层解堵和增产室内实验[J]. 天然气工业,2018,38(9):88-94. TIAN Shouceng,HUANG Zhongwei,LI Gensheng,et al. Laboratory experiments on blockage removing and stimulation of CBM reservoirs by composite pulsating fracturing of radial horizontal wells[J]. Natural Gas Industry,2018,38(9):88-94.
[21] 李根生,黄中伟,李敬彬. 水力喷射径向水平井钻井关键技术研究[J]. 石油钻探技术,2017,45(2):1-9. LI Gensheng,HUANG Zhongwei,LI Jingbin. Study of the key techniques in radial jet drilling[J]. Petroleum Drilling Techniques,2017,45(2):1-9.
[22] 卢义玉,葛兆龙,陈久福,等. 煤矿井下割缝复合水力压裂增透技术及应用[R]. 重庆,重庆大学,2015. [23] 郭君.低透气性松软煤层高压水力割缝增透机理研究及应用[D]. 北京:北京科技大学,2019. GUO Jun. Research and application on high pressure hydraulic slitting in soft coal seam with low permeability[D]. Beijing:University of Science and Technology Beijing,2019. [24] 毕彩芹,胡志方,汤达祯,等. 煤系气研究进展与待解决的重要科学问题[J]. 中国地质,2021,48(02):402-423. Bi Caixin,Hu Zhifang,Tang Dazhen,et al. Research progress of coal measure gas and some important scientific problems[J]. Geology in China,2021,48(2):402-423.
[25] 桑树勋,郑司建,易同生,等. 煤系叠合型气藏及其勘探开发技术模式[J]. 煤田地质与勘探,2022,50(9):13-21. SANG Shuxun,ZHENG Sijian,YI Tongsheng,et al. Coal measures superimposed gas reservoir and its exploration and development technology modes[J]. Coal Geology & Exploration,2022,50(09):13-21.
[26] 陈世达. 黔西多煤层煤层气储渗机制及合层开发技术对策[D]. 北京:中国地质大学(北京),2020. CHEN Shida. Permeable-storage mechanism and the development technical countermeasures for coalbed methane in multi-seams in western Guizhou[D]. Beijing:China University of Geosciences(Beijing),2020. [27] 黄华州,桑树勋,毕彩芹,等. 煤层群煤系多套含气系统特征及其合采效果——以铁法盆地阜新组为例[J]. 沉积学报,2021,39(3):645-655. HUANG Huazhou,SANG Shuxun,BI Caiqin,et al. Characteristics of multi-gas-bearing systems within coal seam groups and the effect of commingled production:A case study on Fuxin Formation,Cretaceous,Tiefa Basin[J]. Acta Sedimentologica Sinica,2021,39(3):645-655.
[28] 秦勇,吴建光,李国璋,等.煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513-2522. QIN Yong,WU Jianguang,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production [J]. Journal of China Coal Society,2020,45(7) :2513-2522.
[29] 郭晨,秦勇,易同生,等. 煤层气合采地质研究进展述评[J].煤田地质与勘探,2022,50(3):42-57. GUO Chen,QIN Yong,YI Tongsheng,et al. Review of the progress of geological research on coalbed methane co-production[J]. Coal Geology & Exploration,2022,50(3):42−57. [30] SHEN Jian,LI Kexin,ZHANG Hewei,et al. The geochemical characteristics,origin,migration and accumulation modes of deep coal-measure gas in the west of Linxing block at the eastern margin of Ordos Basin[J]. Journal of Natural Gas Science and Engineering,2021,91:103965.
[31] GAO Deli,BI Yansen,XIAN Baoan. Technical advances in well type and drilling & completion for high-efficient development of coalbed methane in China[J]. Natural Gas Industry B,2022,9(6):561-577.
[32] TAO Shu,PAN Zhejun,TANG Shuling,et al. Current status and geological conditions for the applicability of CBM drilling technologies in China:A review[J]. International Journal of Coal Geology,2019,202:95-108.
[33] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14. XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.
[34] 杨增强,王琛艳,朱栋,等. 高压水射流钻割一体化防冲机理分析及其数值模拟研究[J]. 矿业安全与环保,2021,48(1):17-22. YANG Zengqiang,WANG Chenyan,ZHU Dong,et al. Analysis and numerical simulation of high pressure water jet drilling-cutting integration for rock burst prevention mechanism[J]. Mining Safety & Environmental Protection,2021,48(1):17-22.
[35] 李瑞.煤层气排采中储层压降传递特征及其对煤层气产出的影响[D]. 武汉:中国地质大学(武汉),2017. LI Rui. Dynamic characteristics of reservoir depressurization during coalbed methane reservoir depletion and its influences on gas output in the Qinshui Basin,Shanxi Province[D]. Wuhan:China University of Geosciences,2017. [36] 伊向艺,吴红军,卢渊,等. 寺河煤矿煤岩颗粒解吸—扩散特征实验研究[J]. 煤炭工程,2013,45(3):111-112. YI Xiangyi,WU Hongjun,LU Yuan,et al. Experiment Study on Desorption-Diffusion Features of Coal and Rock Particles from Sihe Mine[J]. Coal Engineering,2013,45(3):111-112.
[37] 葛兆龙,卢义玉,周哲,等.煤层控制水力压裂裂缝导向扩展理论与技术[M]. 北京:科学出版社,2020. [38] 时亚军,武沛武,王佳,等. 高压水射流卸压增透石门揭煤技术研究[J]. 中国煤炭,2012,38(11):90-93. SHI Yajun,WU Peiwu,WANG Jia,et al. Research on rock cross-cut coal uncovering via high-pressure water jet to release pressure and improve permeability[J]. China Coal,2012,38(11):90-93.
[39] 卢义玉,夏彬伟,葛兆龙,等.水力化煤层增透理论及技术[M]. 北京:科学出版社,2016. [40] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(01):371-387. QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371-387.
[41] 郭涛,高小康,孟贵希,等. 织金区块煤层气合采生产特征及开发策略[J]. 煤田地质与勘探,2019,47(6):14-19. GUO Tao,GAO Xiaokang,MENG Guixi,et al. Combined CBM production behavior and development strategy of multiple coal seams in Zhijin block[J]. Coal Geology & Exploration,2019,47(6):14-19.
[42] 张雷,徐凤银,李子玲,等.煤层气田单/合层开发影响因素分析及应用——以保德区块为例[J]. 煤田地质与勘探,2022,50(9):68-77. ZHANG Lei,XU Fengyin,LI Ziling,et al. Analysis on influencing factors of single/multi-layer development of coalbed methane field:A case study of Baode Block[J]. Coal Geology & Exploration,2022,50(9):68-77.