-
摘要: 【背景】煤炭地下气化(UCG)技术产业化是保障清洁能源供给安全的一个可能解决方案,当前新一轮UCG技术探索热潮方兴未艾。【方法】系统梳理国内国际文献,评述2023—2024年期间UCG技术研究进展,分析UCG技术发展面临的主要挑战,提出未来重点探索方向。【进展】提出了基于UCG的煤炭能源开发利用变革性技术,认为发展UCG-煤层气资源-CO2封存与利用(UCG-CBM-CCUS)协同高效联产工艺技术是推进UCG技术产业化的关键。UCG生产动态与过程控制研究重点范围有所扩大,完善了UCG传热传质模型和模拟方法并建立了UCG腔体生长过程主要参数数学模型,探讨了UCG生产行为对炉内温度、压力、气化剂配方、注气工艺的响应特点和变化规律,论证了UCG生产富氢气体的天然优势和成本优势,揭示声发射定位技术在UCG生产动态监控中的潜在多项功能。UCG安全研究关注重点集中在运行安全、地下水安全、地表沉降防控、碳减排4个方面,研究了UCG粗煤气爆炸特性、井筒喷淋降温措施和管材抗氢腐蚀特点,初步开发出耐高温回填新材料,提出了多种UCG地下水污染防控技术,形成多种UCG地面沉降及残余沉降预测方法,提出了UCG碳减排基本策略及“碳调减”主动减排策略。UCG地质约束与选区选址评价、井下关键装备与工具、技术经济性评价等方面研究进展显著,地质评价高度关注UCG工程行为对地层条件的响应,提出和论证了催化剂注入工艺、新型点火方式、外加电磁场激励加热、气化剂注入方式和工艺改进等新设想,成功研制可燃套管、连续管等关键装备工具,多种新工艺新技术设想颇具新意和潜在实用价值。研究展示了UCG粗煤气生产和利用的经济竞争力。首次实施UCG-ECBM(煤层气增产)高效联采新工艺现场技术验证。【展望】鉴于近期UCG现场实践揭示的重大问题,提出了UCG地质-工程一体化、施工技术水平提升、关键装备工具研发三大未来重点探索方向。Abstract: 【Background】The industrialization of underground coal gasification (UCG) technology is a possible solution to ensure the security of clean energy supply, and a new round of UCG technology research is booming currently. 【Methods】By systematically perusing domestic and international literature, the research progress of UCG technology from 2023 to 2024 is reviewed, the main challenges faced by UCG technology development are analyzed, and future key exploration aspects are proposed. 【Advances】Recent research has proposed transformative technologies for the development and utilization of coal energy based on UCG. It is believed that the development of the collaborative and efficient UCG-CBM-CCUS joint production technology is the key to promoting the industrialization of UCG technology. The research scope for dynamics and process control of UCG production has been expanded, and the UCG heat and mass transfer model and simulation method have been improved. A mathematical model of the main parameters of UCG cavity growth process has been established, and the responses and variations of UCG production behavior to furnace temperature, operating pressure, gasification agent formula, and gas injection process have been explored. The natural and cost advantages of hydrogen-rich gas production from UCG have been demonstrated, and potential multiple functions of acoustic emission positioning technology in dynamic monitoring of UCG production have been revealed. The focus of UCG safety research is on four aspects, including the operational safety, groundwater safety, surface subsidence prevention and control, and carbon emission reduction. The characteristics of UCG syngas explosion, wellbore spray cooling measures, and hydrogen corrosion resistance of pipes have been studied. A high-temperature resistant backfill material has been preliminarily developed, and various UCG groundwater pollution prevention and control technologies have been proposed. Multiple methods for the prediction of UCG ground and residual subsidence have been formed, and basic strategy for the UCG carbon emission reduction and an active emission reduction carbon, named as the Carbon Regulation and Reduction, have been proposed. Significant progress has been made in the research of UCG geological constraints and site-selection evaluation, underground key equipment and tools, and technical and economic evaluation. Geological evaluation is highly focused on the response of UCG engineering behavior to geological conditions, and new ideas have been proposed and demonstrated such as the catalyst injection process, new ignition method, the stimulation heating with external electromagnetic field, the improvement of gasification agent injection method and process. Key equipment tools such as combustible casing and continuous pipe have been successfully developed, and various new process and technology ideas are innovative and have potential practical value. The economic competitiveness of UCG syngas production and utilization is studied and demonstrated. The on-site technical verification of new high-efficiency joint UCG-ECBM (enhancing coalbed methane) process has been successfully implemented for the first time. 【Prospects】In view of the significant issues revealed in recent UCG field tests, three future key research aspects have been proposed, i.e, geological evaluation and UCG engineering integration, construction technology improvement and key equipment and tool research and development.
-
煤矿井下煤与瓦斯突出、突水是煤矿生产过程中的主要灾害,在碎软煤层中尤为突出,这类煤矿的数量很多,占比也很高[1]。利用近水平定向钻孔抽采瓦斯、进行探放水是保障煤矿安全的有效方法[2-3]。煤矿碎软煤层煤质软、破碎、透气性较差,顺煤层钻进时煤层处于欠平衡状态,尤其采用孔底液动螺杆定向钻进施工时,经常出现坍塌卡钻、沉渣卡钻,造成卡钻埋钻事故[4-5];采用水力驱动螺杆马达的高压水也极容易造成塌孔无法成孔[6-8]。针对碎软煤层定向钻进遇到的问题,科技人员开展了大量的研究工作,在碎软煤层钻进中,采用风压空气钻进技术[9],解决上述问题,在淮南、淮北等矿区碎软煤层中广泛应用,最深孔达到了400多m,已成为碎软煤层钻孔施工的主要技术,取得了良好的应用效果。电磁波随钻测量技术既适用液动螺杆钻进,还适用风动螺杆钻进,可以弥补液动随钻测量系统的不足,是解决钻孔横穿软煤工作面的设备保障[10-11]。
电磁波随钻测量技术主要是依靠地层介质和钻杆来进行数据传输,在孔中将测量的数据加载到电磁波载波信号上,电磁波载波信号沿着地层和钻杆向孔口传播,在孔口将检测到的电磁波中的测量信号卸载解码、计算得到姿态测量数据[12-13]。
电磁波随钻测量技术的姿态测量精度直接决定了定向钻孔的施工效果,姿态测量精度偏差大,会对钻孔定向指导造成极大的影响。笔者将无线电磁波全过程影响姿态精度的因素逐条进行论述分析,提出影响姿态精度的因素和相应的解决对策方案,确保电磁波随钻测量系统的测量精度满足定向钻进要求。
1 钻孔姿态测量与定向钻进技术
钻孔姿态可以用倾角和方位角2个参数来确定。用仪器轴线OP与水平面的锐夹角$ \beta $表示倾斜角,称$ \beta $为倾角。物体轴线OP在水平面上的投影OP'与地球磁北方向ON顺时针计量的夹角$ \alpha $,即为磁方位角$ \alpha $(磁方位角经过大地磁偏角校正后为方位角)[14],如图 1所示。
钻孔轨迹即钻头在钻进过程中形成的空间钻孔路径。以测点为基础绘制的钻孔轨迹基本为折线,钻孔轨迹与实际轨迹吻合程度取决于测点的密集程度。在造斜组合钻具中,弯曲工具的2个轴线组成的平面,定义为工具面,工具面与铅垂面夹角为工具面向角,定义沿钻进方向顺时针旋转增加,如图 2中所示。
电磁波随钻测量系统的姿态测量组件是由三轴磁通门传感器和三轴重力加速度计组成,3个相互垂直的坐标轴分别安装加速度传感器和磁传感器,构成姿态测量系统,通过坐标旋转确定唯一的钻孔姿态参数[15-16],如图 3所示。
加速度传感器和磁传感器测量不同方向上的重力分量和磁场分量,根据下面4个公式计算得出倾角$ \beta $、方位角$ \alpha $和工具面角$ \gamma $数值[17]。
$$ \beta {\text{ = }}\arctan \frac{{ - {G_y}}}{{\sqrt {\left( {G_x^2 + G_z^2} \right)} }} \beta \in \left[ { - \frac{{\text{π }}}{{\text{2}}}, \frac{{\text{π }}}{{\text{2}}}} \right] $$ (1) $$ \alpha = \arctan \left[ {\frac{{{G_0}\left( {{B_z}{G_x} - {B_x}{G_z}} \right)}}{{{B_y}\left( {G_x^2 + G_z^2} \right) - {G_y}\left( {{B_x}{G_x} - {B_z}{G_z}} \right)}}} \right] $$ (2) $$ \gamma = \arctan \left( {\frac{{ - {G_x}}}{{ - {G_z}}}} \right) \gamma \in \left[ {0, 2{\text{π }}} \right] $$ (3) $$ {G_0} = \sqrt {G_x^2 + G_y^2 + G_z^2} $$ (4) 式中:Gx、Gy、Gz为加速度传感器所在轴的3个分量测量值,m/s2;Bx、By、Bz为地磁场的3个分量测量值,T;G0为重力加速度值,m/s2。
定向钻进过程中,一般3 m或6 m测量一次钻孔轨迹,轨迹计算时,将2个相邻测点的姿态值的平均值作为进尺的姿态值计算直线段,设测点Pi的坐标($ {X_i} $, $ {Y_i} $, $ {Z_i} $),则其坐标计算如下[18]。
$$ {X_i} = \sum\limits_{i = 0}^n {\Delta L\cos \frac{{{\beta _i} + {\beta _{i - 1}}}}{2}} \cos \left( {\frac{{{\alpha _i} + {\alpha _{i - 1}}}}{2} - \lambda } \right) $$ (5) $$ {Y_i} = \sum\limits_{i = 0}^n {\Delta L\cos \frac{{{\beta _i} + {\beta _{i - 1}}}}{2}} \sin \left( {\frac{{{\alpha _i} + {\alpha _{i - 1}}}}{2} - \lambda } \right) $$ (6) $$ {Z_i} = \sum\limits_{i = 0}^n {\Delta L\sin \frac{{{\beta _i} + {\beta _{i - 1}}}}{2}} $$ (7) 式中:ΔL为测点之间的距离,m;λ为主设计方位角,(°)。
定向钻进是通过改变造斜件螺杆弯角工具面来造斜,利用钻孔造斜轨迹设计来实现,如图 4所示。
按照常规定义,当工具面调整到Ⅰ、Ⅳ区域里时,倾角增大,工具面调整到Ⅱ、Ⅲ区域里时,倾角减小[19-20]。当工具面向角为0°或180°时,造斜强度最大。当工具面调整到Ⅰ、Ⅱ区域里时,方位向右,工具面调整到Ⅲ、Ⅳ区域里时,方位角向左。当工具面向角为90°或270°时,则左右强度最大。
2 设计精度影响因素与解决方案
无线电磁波随钻测量系统姿态测量精度影响因素可分为测量短节设计精度和系统应用引入误差精度。测量短节设计精度主要有以下方面:
① 传感器和基准电源器件自身精度受到元器件制作时工艺不同引起的误差,选择不同的测量传感器,其稳定性、温度特性、响应时间及抗冲击能力等都不同,这些差异都会影响传感器测量精度。因此,设计时,应优先采用品牌较好的器件,必要时对批次进行测试核准。
② 测斜仪结构系统误差主要是由于测量系统传感器敏感轴的不正交、与仪器坐标轴不重合等因素引起的,不正交角和不重合角实际都是小角度,很难或几乎不能通过测量确定,而且是非线性问题,通过分析,采用最优化技术的无约束条件下多变量函数的寻优方法,变量轮换法确定不正交角,单纯形加速法确定不重合角,能有效地确定这些参数,从而达到校正精度[21]。
③ 随机振动和采集不当带来的误差由于测量传感器在采集时,受到瞬间干扰或特殊振动等,使得采集到的样点数据不准从而带来误差。这种误差需要建立采集样点数据判别准则和一次多样点的方式采集数据,进行判别、剔除解决。具体是采用软件设计同一点静态下采集多次样点数据,对采集样点异常点自动剔除,对采集样点稳定部分的数据再进行均值处理,理论上,测量数据越多,准确率越高。
④ 传感器干扰传感器在使用、运输过程中,尤其是磁传感器抗磁干扰性能差,容易受到外界强磁环境影响,发生超差的情况。这种情况一般在测量短节设计时,在传感器外围增加消磁电路和采用误差修正来解决外界对传感器的影响。
⑤ 普通钢质钻杆对测量短节的干扰钢质钻杆距离测量短节较近时,会使测量短节周围的磁环境发生畸变,测量短节测量的精度也会受到影响。通常采用的办法是增加上下无磁钻杆,在设计时根据钻杆的磁性情况以及测量短节对应精度要求,确定无磁钻杆配备长度,减少误差。
⑥ 测量短节标定在出厂时对测量短节进行标定,用于补偿磁传感器、加速度传感器因安装、漂移和随机误差等引入的误差[22]。出厂测量短节标定的精度要求、标定现场磁环境、标定台架、标定数据密度等都影响着数据的精度。这个环节是测量短节出厂前必备的环节,也是测量短节出厂前的综合校准环节。
以上6种影响因素采取合理的处置方法,在产品结构和工艺定型后,也就确定了测量短节系统的重复误差水平。
3 钻场实钻影响因素及数据分析
在煤矿井下现场实钻时,测量短节与无磁钻杆管间的同轴度也会影响探管测量精度,这些影响因素有的还导致较严重精度误差,以往认为测量短节精度就是轨迹测量精度,致使这部分误差容易被忽视。当这种情况严重时,测量结果会被判定为测量系统故障。这也就是常说的“孔中不准,标定架上准”的原因。
如某矿井实施无线电磁波定向钻进作业,在钻进过程中,发现相邻的不同测量点倾角数据变化过大。通常钻孔倾角弯曲强度应不大于0.05 rad/6 m (3°/6 m);钻孔方位角弯曲强度应不大于0.035 rad/6 m(2°/6 m)。现场测量数据不符合弯曲强度要求,钻孔测量人员对测试数据分析后,质疑无线电磁波随钻测量系统的可靠性。
测试人员收集原始数据、测试情况和井下工况条件。在井下钻场,现有钻孔深度(100 m)位置,钻机处于未给进状态,连续多圈旋转钻具实施姿态数据测量。现场采用感应线圈接收方式,随机停机,静置测量了共26组不同工具面的倾角、方位角,数据见表 1。
表 1 同一位置不同工具面实测姿态数据Table 1. The actual attitude data of different tool surfaces at the same position序号 工具面向角/(°) 倾角/(°) 方位角/(°) 1 357.7 –13.5 78.5 2 25.0 –13.6 78.6 3 46.6 –13.7 78.6 4 71.6 –13.8 78.5 5 95.4 –13.8 78.3 6 129.5 –13.6 78.1 7 185.0 –12.8 77.7 8 155.6 –13.4 78.0 9 234.5 –12.2 77.6 10 299.9 –12.6 78.1 11 325.3 –13.0 78.5 12 183.5 –12.8 77.7 13 241.3 –12.2 77.5 14 333.5 –13.2 78.6 15 19.1 –13.6 78.6 16 228.6 –12.2 77.5 18 224.0 –12.3 77.5 19 20.4 –13.6 78.6 20 143.9 –13.5 77.9 21 236.0 –12.2 77.4 22 335.3 –13.2 78.6 23 62.8 –13.9 78.4 24 147.2 –13.4 77.9 25 252.4 –12.2 77.5 26 348.6 –13.4 78.6 由于是随机停机,不同圈数的工具面向角值也是随机产生,实测数据在图表中较为分散,不利于分析。因此,对所有的数据按照工具面向角数据从小到大进行了排列,再按照工具面变化分别对倾角和方位角的数据变化趋势进行成图,如图 5所示。
通过数据分析及曲线,可以看到:
① 尽管是不同圈数的数据,但倾角、方位角的误差变化随着工具面变化有着明显的规律。即倾角在工具面向角70°时呈现低谷,在250°附近呈现高峰。方位角在工具面向角220°附近呈现低谷,在30°呈现高峰。波峰和波谷工具面相差约为180°,能够呈现出较为明显的规律和走势。
② 按照不同时刻测量的数据来分析,不同圈数相近工具面向角测点的倾角最大误差不超过0.1°(工具面向角62.8°和71.6°),方位角最大误差为0.2°(工具面向角234.5°和236°)。可以看出,无线电磁波系统的重复测量精度对照本文表述的6种设计误差,补偿处理较好,完全满足无线电磁波测量系统设计需求。
针对图 5中的测点变化趋势,分析造成上述原因,初步判定是由于外钻杆与测量短节不同轴造成,不同轴会使图 2和图 3所示模型中的Y轴不垂直于X轴与Z轴的平面。此时,利用式(1)—式(7)计算得出的姿态和轨迹变化量也就不准确。
现场提钻查看测量系统,测量短节与无磁钻杆四周受力不均,拆装时有憋劲情况,主要原因是无磁钻杆变形或内部的测量短节变形,因此,测量短节与无磁钻杆的同轴度已经无法保证。
4 姿态数据误差修正
根据上述分析,数据修正主要依据倾角、方位角的变化趋势,综合考虑变形的原因,建议在无线电磁波测量系统测量工艺中,增加现场校准环节。校准是在钻孔开孔完成后,将电磁波探管随钻进入孔中,正式钻进前,对无线电磁波探管姿态测量进行校准。校准方法是在不给进情况下,在同一钻孔深度(> 10 m),旋转钻具,在工具面向角0°~360°范围内多次测量倾角、方位角,记录并建立姿态校准数据表。建议标校准数据表中测点数不少于12个点,且尽可能均匀分布到钻杆轴向垂直平面的4个象限(即约每30°,布置1个测点)。考虑到现场情况和操作人员的技术能力,数据修正方式可选择查表补偿法和拟合函数法。
查表补偿法是根据姿态校准数据表,建立工具面的补偿表。补偿表的基值是数据波动的中心值,基值减去校准数据表中不同工具面的倾角和方位角得到的数值确定为补偿值。正常实钻测量时,根据工具面的位置就近查表,在测量的数值上加补偿值即可进行误差修正。这种修正方法,对测点的均匀度和数据要求较高,测点均匀度和数据多少决定了修正的精度高低。该方法虽然操作难度小,但每次需要查表校准。
拟合函数法是利用数据波动规律建立补偿函数,无磁钻杆和测量短节不同轴具有旋转特性,其规律与正弦函数较为接近,因此,采用拟合正弦函数进行补偿。倾角、方位角修正函数的基本幅值为倾角、方位角各自变化的平均值,当标定点在工具面0°~360°范围内分布均匀波峰波谷明显可见时,也可采用1/2波峰和波谷差值。倾角、方位角误差波动值分别按照下面公式计算。
$$ {A_{\Delta \beta }} = \left( {{A_{\beta \max }} - {A_{\beta \min }}} \right) - {A_{\beta \min }} $$ (8) $$ {A_{\Delta \alpha }} = \left( {{A_{\alpha \max }} - {A_{\alpha \min }}} \right) - {A_{\alpha \min }} $$ (9) 式中:$ {A_{\Delta \beta }} $为倾角测量误差波动值,(°);$ {A_{\beta \max }} $、$ {A_{\beta \min }} $分别为倾角测量最大值、最小值,(°);$ {A_{\Delta \alpha }} $方位角测量误差波动值,(°);$ {A_{\alpha \max }} $、$ {A_{\alpha \min }} $分别为方位角测量最大值、最小值,(°)。
初相角的选择是利用角度变化趋势选定,初相角初步选定后,利用建立的数据进行测试,选择修正后的幅度变化最小时的相角作为函数的初相角。基值、波动值、初相角确定后,修正函数也就确定。
$$ {\beta _{\text{c}}} = {\beta _{\text{b}}} + \frac{1}{2}{A_{\Delta \beta }}\sin \left( {x + {\varphi _\beta }} \right) $$ (10) $$ {\alpha _{\text{c}}} = {\alpha _{\text{b}}} + \frac{1}{2}{A_{\Delta \alpha }}\sin \left( {x + {\varphi _\alpha }} \right) $$ (11) 式中:$ {\beta _{\text{c}}} $、$ {\beta _{\text{b}}} $分别为标定后、实测的倾角数据,(°);$ {\alpha _{\text{c}}} $、$ {\alpha _{\text{b}}} $分别为标定后、实测的方位角数据,(°);$ {\varphi _\beta } $、$ {\varphi _\alpha } $分别为拟合函数法修正的倾角、方位角初相角,rad。
拟合函数法技术分析难度稍大,但函数确定后,可以导入到定向钻进轨迹设计计算表中,直接按照设计轨迹进行定向钻进,不再需要其他干预。
利用拟合函数法对现场实测的数据进行修正测试。将表 1中的姿态数据代入式(8)、式(9)中,得到倾角补偿函数的幅值为1.6,方位角补偿函数的幅值为1.1。倾角的初相角选择$ \frac{{\text{π }}}{{10}} $,方位角的初相角选择1。将补偿数值和初相角代入式(10)、式(11)计算得到补偿后数据,计算结果见表 2。
表 2 姿态数据修正前后对比Table 2. Comparison table of attitude data before and after correction工具面向角/(°) 倾角/(°) 方位角/(°) 修正前 修正后 修正前 修正后 19.1 –13.6 –13.12 78.6 78.07 20.4 –13.6 –13.10 78.6 78.06 25.0 –13.6 –13.05 78.6 78.05 46.6 –13.7 –12.98 78.6 78.07 62.8 –13.9 –13.11 78.4 77.92 71.6 –13.8 –13.00 78.5 78.07 87.8 –13.9 –13.13 78.3 77.99 95.4 –13.8 –13.07 78.3 78.05 129.5 –13.6 –13.17 78.1 78.17 143.9 –13.5 –13.25 77.9 78.10 147.2 –13.4 –13.20 77.9 78.13 155.6 –13.4 –13.31 78.0 78.30 183.5 –12.8 –13.09 77.7 78.18 185.0 –12.8 –13.11 77.7 78.19 224.0 –12.3 –13.01 77.5 78.04 228.6 –12.2 –12.93 77.5 78.03 228.6 –12.2 –12.93 77.5 78.03 234.5 –12.2 –12.96 77.6 78.11 236.0 –12.2 –12.97 77.4 77.91 241.3 –12.2 –12.99 77.5 77.98 252.4 –12.2 –13.00 77.5 77.92 299.9 –12.6 –13.14 78.1 78.13 325.3 –13.0 –13.23 78.5 78.29 333.5 –13.2 –13.32 78.6 78.32 335.3 –13.2 –13.29 78.6 78.30 348.6 –13.4 –13.31 78.6 78.21 357.7 –13.5 –13.28 78.5 78.05 修正后的倾角、方位角随工具面向角变化趋势,如图 6所示。
从表 2和图 6中可以看出,补偿后倾角精度达到±0.2°,方位角精度达到±0.2°。倾角、方位角在同一位置变化很小,基本不受工具面旋转的影响。补偿后的现场采集数据达到了定向钻进的精度要求。
5 结论
a. 明确了无线电磁波随钻测量系统出厂前器件自身精度、结构系统误差、随机振动和采集不当、传感器干扰、普通钻杆干扰、测量短节标定等的6种影响因素,并给出了相应的处理方法。
b. 根据现场测试数据分析,发现不同工具面倾角和方位角数据具有明显的旋转变化规律,确定误差原因是测量短节与无磁钻杆不同轴造成的;根据数据特性提出现场校准数据采集方法和技术要求。通过数据分析,纠正短节精度就是钻孔测量精度的错误认识。针对不同轴问题,建议在现场仪器组装完成入孔后,对孔中测量部分进行校正,确保仪器测量精度。
c. 根据不同轴造成的因素精度考虑到钻场的条件和操作人员的技术能力,提出查表补偿法和拟合函数法两种修正方法,就补偿方法和计算给出说明。现场人员依据情况选择合适的校准方法,能够使得测量的数据更加准确。倾角和方位角校准修正后,精度均控制在±0.2°,满足碎软煤层轨迹控制精度要求。
d. 本次在无线电磁波随钻测量施工工艺上,增加校准流程对不同轴进行补偿,但主要依靠人员手动事后去补偿,仅解决了施工现场遇到的问题,没有达到主动预防目的,后续将在测量软件中增加现场实测前自标定环节,完成入孔后自动标定,提高随钻测量精度。
-
[1] 俞大为. 煤炭地下气化研究[J]. 化学世界, 1947, 2(8): 12-14. [2] UPPALAKKAL V, JHARKHANDE J, HAKKIM A, et al. Strategic utilization of geo-resources in India: Integrated machine learning and kinetic modeling of lignite for underground coal gasification assessment[J]. Natural Resources Research, 2024, 33(4): 1491-1528.
[3] 秦勇,易同生,杨磊,等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探, 2023, 51(7): 17-25. QIN Yong, YI Tongsheng, YANG Lei, et al. Underground coal gasification field tests in China : History and prospects[J]. Coal Geology & Exploration, 2023, 51(7): 17-25.
[4] 孔维敏,周永峰,秦勇,等. 苏联UCG产业化历史回顾与评述[J/OL]. 煤田地质与勘探, 2023: 1-8[2025-02-10]. http://kns.cnki.net/kcms/detail/61.1155.P.20230505.0844.002.html. KONG Weimin, ZHOU Yongfeng, QIN Yong, et al. Review and comment on industrialization history of UCG in the Soviet Union[J/OL]. Coal Geology & Exploration, 2023: 1- 8[2025-02-10]. http://kns. cnki. net/kcms/detail/61. 1155. P. 20230505. 0844. 002. html. [5] 黄婉,王军,秦勇,等. 美国UCG先导试验及其对现代UCG技术的贡献[J/OL]. 煤田地质与勘探, 2023: 1-8[2025-02-10]. http://kns.cnki.net/kcms/detail/61.1155.p.20230419.1800.008.html. HUANG Wan, WANG Jun, QIN Yong, et al. US UCG pilot test and its contribution to modern UCG technology[J/OL]. Coal Geology & Exploration, 2023: 1-8[2025-02-10]. http://kns.cnki.net/kcms/detail/61.1155.p.20230419.1800.008.html.
[6] 金黎黎,杨磊,吴亚荣,等. 欧盟国家煤炭地下气化先导试验历程与进展述评[J]. 煤田地质与勘探, 2023, 51(7): 43-51. JIN Lili, YANG Lei, WU Yarong, et al. UCG pilot tests in EU countries: A review of history and progress[J]. Coal Geology & Exploration, 2023, 51(7): 43-51.
[7] 周泽,汪凌霞,秦勇,等. 澳大利亚UCG工程示范历程与启示[J]. 煤田地质与勘探, 2023, 51(7): 52-60. ZHOU Ze, WANG Lingxia, QIN Yong, et al. UCG engineering demonstrations in Australia: History and its implications[J]. Coal Geology & Exploration, 2023, 51(7): 52-60.
[8] BLINDERMAN M S, KLIMENKO A Y. Underground coal gasification and combustion[M]. Amsterdam: Woodhead Publishing, 2017.
[9] 东振,陈艳鹏,孔令峰,等. 煤炭地下气化试验综述与产业化发展建议[J]. 煤田地质与勘探, 2024, 52(2): 180- 196. DONG Zhen, CHEN Yanpeng, KONG Lingfeng, et al. Underground coal gasification: Overview of field tests and suggestions for industrialization[J]. Coal Geology & Exploration, 2024, 52(2): 180-196. [10] 陈新军,刘曾勤,陈刚,等. 全球煤炭地下气化发展态势及展望:基于专利分析[J]. 中国国土资源经济, 2024(3): 18-24. CHEN Xinjun, LIU Zengqin, CHEN Gang, et al. Global development trend and prospect of underground coal gasification: Based on patent analysis[J]. Natural Resource Economics of China, 2024(3): 18-24.
[11] TAKYI S A, ZHANG Yindi, SI Mengting, et al. Current status and technology development in implementing low carbon emission energy on underground coal gasification (UCG)[J]. Frontiers in Energy Research, 2023, 10: 1051417.
[12] MANDAL R, MAITY T. Operational process parameters of underground coal gasification technique and its control[J]. Journal of Process Control, 2023, 129: 103031.
[13] GIWA S O, TAZIWA R T. Adoption of advanced coal gasification: A panacea to carbon footprint reduction and hydrogen economy transition in South Africa[J]. International Journal of Hydrogen Energy, 2024, 77: 301-323.
[14] LOZYNSKYI V, FALSHTYNSKYI V, KOZHANTOV A, et al. Increasing the underground coal gasification efficiency using preliminary electromagnetic coal mass heating[J]. Earth and Environmental Science, 2024, 1348(1): 012045.
[15] AFANASEV P, ASKAROVA A, ALEKHINA T, et al. An overview of hydrogen production methods : Focus on hydrocarbon feedstock[J]. International Journal of Hydrogen Energy, 2024, 78: 805-828.
[16] WIDERA M, URBAN SKI P, MAZUREK S, et al. Polish lignite resources, mining and energy industries: What is next?[J]. Mineral Resources Management, 2024, 40(2): 5-28.
[17] SALMACHI A, ZEINIJAHROMI A, PARKER H M, et al. Experimental investigation of alterations in coal fracture network induced by thermal treatment: Implications for CO2 geo-sequestration[J]. Energy, 2024, 308: 132893.
[18] SMITH E K, BARAKAT S M, AKANDE O, et al. Subsurface combustion and gasification for hydrogen production: Reaction mechanism, techno-economic and lifecycle assessment[J]. Chemical Engineering Journal, 2024, 480: 148095.
[19] HAMANAKA A, ISHII Y, ITAKURA K, et al. Monitoring the gasification area and its behavior in underground coal gasification by acoustic emission technique instead of temperature measurement[J]. Scientific Reports, 2023, 13: 9757.
[20] SHAHBAZI M, NAJAFI M, MARJI M F, et al. Lattice numerical modeling of the effects of synthetic gas flow rate and pre-existing cleat dimensions on the crack propagation and cavity growth in UCG process[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46: 348.
[21] SAKIZ U. Investigation of the thermo physico-mechanical and drilling characteristics of sandstone in Zonguldak hard coal basin[J]. Geomechanics and Geophysics for Geo- Energy and Geo-Resources, 2023, 9: 141.
[22] 葛世荣,樊静丽,刘淑琴,等. 低碳化现代煤基能源技术体系及开发战略[J]. 煤炭学报, 2024, 49(1): 203-223. GE Shirong, FAN Jingli, LIU Shuqin, et al. Low carbon modern coal-based energy technology system and development strategy[J]. Journal of China Coal Society, 2024, 49(1): 203-223.
[23] 葛世荣,刘淑琴,樊静丽,等. 低碳化现代煤基能源开发关键技术体系[J]. 煤炭学报, 2024, 49(7): 2949-2972. GE Shirong , LIU Shuqin , FAN Jingli , et al. Key technologies for low-carbon modern coal-based energy[J]. Journal of China Coal Society, 2024, 49(7): 2949-2972.
[24] KACUR J, LACIAK M, DURDA N M, et al. A review of research on advanced control methods for underground coal gasification processes[J]. Energies, 2023, 16(8): 3458.
[25] 井冲霄. 多孔介质内高温气体流动及传热特性研究[D]. 西安:西安石油大学, 2023. JING Chongxiao. Research on flow and heat transfer characteristics of high temperature gas in porous media[D]. Xi’an: Xi’an Shiyou University, 2023. [26] ZHANG Zixiang , ZHAO Yangsheng , FENG Zijun. Numerical simulation of solid-fluid-thermal coupling in the heating stage of in-situ injection of supercritical water for hydrogen production from coal[J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45(3): 7509-7528.
[27] ZHANG Haoyu , XIAO Yi , LUO Guangqian , et al. Numerical simulation study on chemical ignition process of underground coal gasification[J]. Energy, 2024, 298: 131350.
[28] AHMED A, JAVED S B, UPPAL A A, et al. Development of CAVLAB: A control-oriented MATLAB based simulator for an underground coal gasification process[J]. Mathematics, 2023, 11(11): 2493.
[29] 杨萧. 煤炭地下气化过程的热-流-固-化(THMC)耦合模型与特征场演变规律[D]. 徐州:中国矿业大学, 2023. YANG Xiao. A thermal-hydrological-mechanical-chemical (THMC) coupled mathematical model and evolution law of the characteristic field in underground coal gasification[D]. Xuzhou: China University of Mining and Technology, 2023. [30] 张磊,于建林,周明军,等. 一种模型不确定的煤炭地下气化控制算法研究[J]. 天然气与石油, 2023, 41(1): 141- 146. ZHANG Lei, YU Jianlin, ZHOU Mingjun, et al. Study on control algorithm of underground coal gasification process with model uncertainty[J]. Natural Gas and Oil, 2023, 41(1): 141-146. [31] 张庆贺,王晓蕊,袁亮. 煤炭地下气化多场耦合数值模拟程序开发及多场演化规律[J]. 煤炭学报, 2023, 48(6): 2506-2518. ZHANG Qinghe , WANG Xiaorui , YUAN Liang. Development of a multi-field coupled numerical simulation program for underground coal gasification and multi-field evolution laws[J]. Journal of China Coal Society, 2023, 48(6): 2506-2518.
[32] PERKINS G. Underground coal gasification Part I: Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67: 158-187.
[33] SU Faqiang, HE Xiaolong, DAI Mengjia, et al. Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions[J]. Energy, 2023, 285: 129309.
[34] 武俊博. 水平同轴型煤炭地下气化空腔扩展及能量回收评价研究[D]. 焦作:河南理工大学, 2023. WU Junbo. Study on cavity expansion and energy recovery evaluation of horizontal coaxial underground coal gasification[D]. Jiaozuo: Henan Polytechnic University, 2023. [35] PILECKI Z, HILDEBRANDT R, KRAWIEC K, et al. Assessment of combustion cavern geometry in underground coal gasification process with the use of borehole ground- penetrating radar[J]. Energies, 2023, 16(18): 6734.
[36] 向富果,葛叶子,台俊茹,等. 煤炭地下气化技术腔体生长规律探索[J]. 煤化工, 2023, 51(6): 113-116. XIANG Fuguo, GE Yezi, TAI Junru, et al. Cavity growth law exploration of coal underground gasification technology[J]. Coal Chemical Industry, 2023, 51(6): 113- 116. [37] SONG Chang, CHEN Shanshan, CHEN Yanpeng, et al. An experimental study of convective flow in a bottom heated cavity with ventilation duct : Laboratory modeling of convective flow in under coal gasification cavity[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123967.
[38] 王田多奕. 煤炭地下气化水气运移及压力变化特征研究[D]. 北京:中国石油大学(北京), 2023. WANGTIAN Duoyi. Study on characteristics of water influx, gasified gas transport and pressure change for underground coal gasification[D]. Beijing : China University of Petroleum(Beijing), 2023.
[39] XIN Lin, WANG Bowei, LI Jian, et al. Modeling test of combustion cavity growth during underground coal gasification in the early stage of ignition[J]. ACS Omega, 2024, 9(3): 3691-3700.
[40] SU Faqiang, YANG Junnan, HE Xiaolong, et al. Influences of removable gas injection methods on the temperature field and gas composition of the underground coal gasification process[J]. Fuel, 2024, 363: 130953.
[41] 秦勇,王作棠,韩磊. 煤炭地下气化中的地质问题[J]. 煤炭学报, 2019, 44(8): 2516-2530. QIN Yong, WANG Zuotang, HAN Lei. Geological problems in underground coal gasification[J]. Journal of China Coal Society, 2019, 44(8): 2516-2530.
[42] PERKINS G. Underground coal gasification Part Ⅱ : Fundamental phenomena and modeling[J]. Progress in Energy and Combustion Science, 2018, 67: 234-274.
[43] WU Fangjie, HUANG Siyuan, JIANG Qi, et al. Effects of pressure and heating rate on coal pyrolysis: A study in simulated underground coal gasification[J]. Journal of Analytical and Applied Pyrolysis, 2023, 175: 106179.
[44] 张涛. 富氧空气/CO2煤炭地下气化产物及温度场变化规律研究[D]. 焦作:河南理工大学, 2023. ZHANG Tao. Study on the product and temperature field variation of oxygen-rich air /CO2 coal underground gasification[D]. Jiaozuo: Henan Polytechnic University, 2023. [45] 张友军, 杨鹏飞,刘家炜,等. 煤炭地下气化注入井压力控制[J]. 科学技术与工程, 2023, 23(35): 15036-15043. ZHANG Youjun, YANG Pengfei, LIU Jiawei, et al. Pressure control of underground coal gasification injection well[J]. Science Technology and Engineering, 2023, 23(35): 15036- 15043. [46] WIATOWSKI M, KAPUSTA K, STRUGALA-WILCZEK A, et al. Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products[J]. Energies, 2023, 16(11): 4455.
[47] CHEN Hao, QIN Yong, CHEN Yanpeng, et al. Quantitative evaluation of underground coal gasification based on a CO2 gasification agent[J]. Energies, 2023, 16(19): 6993.
[48] FANG Huijun, LI Sen, GE Tengze, et al. Effects of the steam-to-oxygen ratio and the equivalence ratio on underground coal gasification[J]. Combustion Science and Technology, 2024, 196(15): 3514-3526.
[49] 苏发强,代孟佳,何小龙,等. 煤炭地下气化注气方式与能量回收效率[J]. 煤炭学报, 2024, 49(3): 1636-1646. SU Faqiang, DAI Mengjia, HE Xiaolong, et al. Gas injection methods and energy recovery efficiency in underground coal gasification[J]. Journal of China Coal Society, 2024, 49(3): 1636-1646.
[50] FENG Lele, DONG Maifan, WANG Binhao, et al. Gas production performance of underground coal gasification with continuously moving injection: Effect of direction and speed[J]. Fuel, 2023, 347: 128425.
[51] 陈贞龙,王运海,李清,等. 延川南2#煤层地下气化制氢工艺研究[J]. 煤炭技术, 2024, 43(3): 42-46. CHEN Zhenlong , WANG Yunhai , LI Qing , et al. Underground gasification process for hydrogen production in Yanchuan South No. 2 Coal Seam[J]. Coal Technology, 2024, 43(3): 42-46.
[52] 刘淑琴,戚川,纪雨彤,等. 煤炭地下气化制氢技术路径[J]. 洁净煤技术, 2023, 29(8): 1-10. LIU Shuqin, QI Chuan, JI Yutong, et al. Research on hydrogen production pathway by underground coal gasification[J]. Clean Coal Technology, 2023, 29(8): 1-10.
[53] 刘淑琴,刘欢,郭巍,等. 深部煤炭地下气化制氢先进能效分析[J]. 煤炭学报, 2024, 49(2): 1138-1147. LIU Shuqin, LIU Huan, GUO Wei, et al. Advanced exergy analysis of deep UCG to hydrogen production[J]. Journal of China Coal Society, 2024, 49(2): 1138-1147.
[54] SU Faqiang, ITAKURA K, DEGUCHI G, et al. Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques[J]. Applied Energy, 2017, 189: 142-156.
[55] 邓启超. 实验室条件下煤炭地下气化区扩展活动规律研究[D]. 焦作:河南理工大学, 2023. DENG Qichao. Study on the expansion and activity of underground coal gasification area under laboratory conditions[D]. Jiaozuo: Henan Polytechnic University, 2023. [56] 秦勇,易同生,周永锋,等. 煤炭地下气化产业政策建设困境与破局对策[J]. 煤炭学报, 2023, 48(6): 2498-2505. QIN Yong, YI Tongsheng, ZHOU Yongfeng, et al. Dilemma and countermeasure of policy construction of UCG industry[J]. Journal of China Coal Society, 2023, 48(6): 2498-2505.
[57] 秦勇,易同生,周永锋,等. 煤炭地下气化碳减排技术研究进展与未来探索[J]. 煤炭学报, 2024, 49(1): 495-512. QIN Yong, YI Tongsheng, ZHOU Yongfeng, et al. Research progress and future study of carbon emission reduction for UCG[J]. Journal of China Coal Society, 2024, 49(1): 495- 512. [58] KRAUSE E, KRZEMIEN A, SMOLIN SKI A. Analysis and assessment of a critical event during an underground coal gasification experiment[J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 173-182.
[59] HUANG Wengang, DUAN Tianhong, WANG Zuotang, et al. Characteristic analysis and risk control of syngas explosion during underground coal gasification[J]. ACS Omega, 2024, 9(19): 21307-21321.
[60] 赵桓祯. 地下煤炭气化超高温环境下生产井套管柱安全性分析[D]. 西安:西安石油大学, 2023. ZHAO Huanzhen. Safety analysis of casing strings in production wells under ultrahigh temperature environment of underground coal gasification[D]. Xi’an: Xi’an Shiyou University, 2023. [61] 唐洋,谢娜,熊浩宇,等. 煤炭地下气化高温喷淋井筒温度应力场研究[J]. 煤田地质与勘探, 2023, 51(11): 13- 23. TANG Yang, XIE Na, XIONG Haoyu, et al. Stress field of high-temperature wellbore under spray cooling for underground coal gasification[J]. Coal Geology & Exploration, 2023, 51(11): 13-23. [62] 石贵元. 粗煤气及高含氢条件下氢腐蚀规律实验研究[D]. 北京:中国石油大学(北京), 2023. [63] ŠKVAREKOVA E, TOMASKOVA M, GABRIEL W, et al. Analysis of risk factors for underground coal gasification[J]. Management Systems in Production Engineering, 2019, 27(4): 227-235.
[64] 王凡, 徐冰,谌伦建,等. 煤炭地下气化对地下水的污染及其防控研究进展[J]. 当代化工研究, 2023, 24: 11-13. WANG Fan, XU Bing, CHEN Lunjian, et al. Research progress on groundwater pollution by underground coal gasification and its prevention and control[J]. Modern Chemical Research, 2023, 24: 11-13.
[65] WANG Fan , CHEN Lunjian , XU Bing , et al. Characterization of the migration of organic contaminants in laboratory-scale groundwater polluted by underground coal gasification[J]. Environmental Science and Pollution Research, 2024, 31(23): 34446-34458.
[66] 王凡,徐冰,谌伦建,等. 煤炭地下气化污染物苯酚在渗透反应墙中的穿透行为及数值反演[J/OL]. 洁净煤技术, 2024: 1-8[2025-02-10]. http://kns.cnki.net/kcms/detail/11.3676.TD.20240131.0955.002.html. WANG Fan, XU Bing, CHEN Lunjian, et al. Breakthrough behavior and numerical inversion of underground coal gasification organic pollutant phenol through permeable reaction barrier[J/OL]. Clean Coal Technology, 2024: 1-8[2025-02-10]. http://kns.cnki.net/kcms/detail/11.3676.TD.20240131.0955.002.html.
[67] ZHAI Guangqing, DOU Longhui, PANG Jiabao, et al. Experimental study on coagulation and adsorption treatment of wastewater in combustion cavity for underground coal gasification[J]. Process Safety and Environmental Protection, 2024, 188: 1280-1291.
[68] 秦勇,易同生,汪凌霞,等. 面向项目风险控制的煤炭地下气化地质条件分析[J]. 煤炭学报, 2023, 48(1): 290- 306. QIN Yong, YI Tongsheng, WANG Lingxia, et al. Analysis of geological conditions for risk control of UCG project[J]. Journal of China Coal Society, 2023, 48(1): 290-306. [69] LIU Xiaopeng, XU Liangji, ZHANG Kun. Strata movement characteristics in underground coal gasification (UCG) under thermal coupling and surface subsidence prediction methods[J]. Applied Sciences, 2023, 13(8): 5192.
[70] 董京楠,何爱国,刘奕衫,等. 煤炭地下气化腔体稳定性研究[J]. 石油科学通报, 2024, 9(4): 690-698. DONG Jingnan, HE Aiguo, LIU Yishan, et al. Study of stability of underground coal gasification caverns[J]. Petroleum Science Bulletin, 2024, 9(4): 690-698.
[71] 东振,任博,陈艳鹏,等. 中深层煤炭地下气化的气化腔安全宽度计算方法[J]. 煤炭科学技术, 2024, 52(2): 183- 193. DONG Zhen, REN Bo, CHEN Yanpeng, et al. Calculation method of safe width of gasification cavity for medium- deep underground coal gasification[J]. Coal Science and Technology, 2024, 52(2): 183-193. [72] TANG Chao, LI Huaizhan, GUO Guangli, et al. Stability evaluation method of gasification coal pillar under thermal coupling condition for prevention of environment secondary pollution[J]. Science of the Total Environment, 2024, 954: 176265.
[73] JIANG Yuan, CHEN Bingbing, TENG Lin, et al. Surface subsidence modelling induced by formation of cavities in underground coal gasification[J]. Applied Sciences, 2024, 14(13): 5733.
[74] TANG Chao, LI Huaizhan, GUO Guangli, et al. Prediction method of surface residual subsidence for land resource reuse after low-carbon underground coal gasification[J]. Environmental Earth Sciences, 2023, 82: 490.
[75] CHEN Fu, LI Huaizhan, DAI Guangli, et al. The new way for realizing carbon neutrality of coal and analysis of bearing characteristics and stability of coal pillar in production[J]. Journal of Cleaner Production, 2023, 415: 137766.
[76] LI Jian, BAI Jinwen, FENG Guorui, et al. A high temperature resistance backfilling material for underground coal gasification: Microstructure, physical and mechanical characteristics[J]. Construction and Building Materials, 2024, 441: 137557.
[77] 葛世荣,王兵,冯豪豪,等. 煤基能源动态碳中和模式及其保供降碳效益评估[J]. 中国工程科学, 2023, 25(5): 122-135. GE Shirong, WANG Bing, FENG Haohao, et al. Dynamic carbon neutrality mode for coal-based energy systems and effectiveness assessment thereof[J]. Strategic Study of CAE, 2023, 25(5): 122-135.
[78] LI Wei, LI Huaizhan, CHEN Yanpeng, et al. Risk analysis and production safety design of supercritical carbon dioxide storage in gasification combustion cavity[J]. Energy, 2024, 293: 130757.
[79] CHEN Run, LYU Fengrong, BAO Yunxia, et al. A discussion on CO2 sequestration in the UCG space based upon the review of the UCG residue physicochemical properties[J]. Minerals, 2023, 13(5): 616.
[80] 刘淑琴,周蓉,潘佳,等. 煤炭地下气化选址决策及地下水污染防控[J]. 煤炭科学技术, 2013, 41(5): 23-27. LIU Shuqin, ZHOU Rong, PAN Jia, et al. Location selection and groundwater pollution prevention & control regarding underground coal gasification[J]. Coal Science and Technology, 2013, 41(5): 23-27.
[81] PEI Peng, NASAH J, SOLC J, et al. Investigation of the feasibility of underground coal gasification in North Dakota, United States[J]. Energy Conversion and Management, 2016, 113: 95-103.
[82] 周泽,易同生,秦勇,等. 贵州无井式UCG选址选层—四性‖地质评价模式与资源类型划分[J]. 煤炭学报, 2024, 49(5): 2414-2425. ZHOU Ze, YI Tongsheng, QIN Yong, et al. —Four properties‖ geological evaluation model and resource type classification of non-well type UCG site and layer selection in Guizhou Province[J]. Journal of China Coal Society, 2024, 49(5): 2414-2425.
[83] HUANG Wengang, ZHANG Shaowei, WANG Guozhi, et al. Modeling methodology for site selection evaluation of underground coal gasification based on combination weighting method with game theory[J]. ACS Omega, 2023, 8(12): 11544-11555.
[84] 崔义,陶树,王志珩,等. 扎赉诺尔煤田煤炭地下气化地质评价与有利区优选[J/OL]. 煤炭学报, 2024: 1-17[2025-02-10]. https://doi.org/10.13225/j.cnki.jccs.2024.0569. CUI Yi, TAO Shu, WANG Zhiheng, et al. Geological evaluation and favorable area optimization for underground coal gasification in Zhalainuoer Coalfield[J/OL]. Journal of China Coal Society, 2024: 1-17[2025-02-10]. https://doi.org/10.13225/j.cnki.jccs.2024.0569.
[85] 赵泽乾. 延川南煤炭地下气化地质风险评价[D]. 徐州: 中国矿业大学, 2023. ZHAO Zeqian. Geological risk assessment of underground coal gasification in South Yanchuan[D]. Xuzhou: China University of Mining and Technology, 2023. [86] BISWAS A K, ISLAM M R, HABIB M A. An analytical investigation of critical factors to prioritize coalfields for Underground Coal Gasification-Bangladesh case[J]. Heliyon, 2023, 9(7): e18416.
[87] 王锦昌,刘刚,张辉,等. 深部煤层地下气化选址研究: 以东胜气田J148地区为例[J]. 矿业科学学报, 2024, 9(2): 156-166. WANG Jinchang, LIU Gang, ZHANG Hui, et al. Study on site selection of underground gasification in deep coal seam: A case study of J148 area in Dongsheng Gas Field[J]. Journal of Mining Science and Technology, 2024, 9(2): 156- 166. [88] 王兴刚,范谭广,焦立新,等. 三塘湖盆地煤炭地下气化地质评价与有利区域[J]. 新疆石油地质, 2023, 44(3): 307-313. WANG Xinggang, FAN Tanguang, JIAO Lixin, et al. Geological evaluation and favorable areas of underground coal gasification in Santanghu Basin[J]. Xinjiang Petroleum Geology, 2023, 44(3): 307-313.
[89] 易同生,秦勇,汪凌霞,等. 贵州省煤炭地下气化资源评价及现场先导性试验选址[R]. 贵阳:贵州省煤田地质局, 2023. [90] YIN Zhenyong , XU Hao , CHEN Yanpeng , et al. Experimental simulate on hydrogen production of different coals in underground coal gasification[J]. International Journal of Hydrogen Energy, 2023, 48(19): 6975-6985.
[91] WIATOWSKI M, BASA W, PANKIEWICZ-SPERKA M, et al. Experimental study on tar formation during underground coal gasification: Effect of coal rank and gasification pressure on tar yield and chemical composition[J]. Fuel, 2024, 357: 130034.
[92] 袁淑霞,江琪彬,王嘉杰,等. 煤炭地下气化系统的催化剂 注入 工艺 研究 [J/OL]. 洁净 煤技 术, 2023: 1-9[2025-02-10]. https://doi.org/10.13226/j.issn.1006-6772.23080203. YUAN Shuxia, JIANG Qibin, WANG Jiajie, et al. Research on catalyst injection technology based on underground coal gasification system[J/OL]. Clean Coal Technology, 2023: 1- 9[2025-02-10]. https://doi.org/10.13226/j.issn.1006-6772.23080203.
[93] DONG Maifan, FENG Lele, QIN Botao, et al. A novel gas injection method with swirl flow in underground gasification for improving gas production and controlling pollution yields[J]. Energy, 2024, 297: 131351.
[94] FENG Lele, DONG Maifan , QIN Botao, et al. H2 production enhancement in underground coal gasification with steam addition : Effect of injection conditions[J]. Energy, 2024, 291: 130379.
[95] 葛腾泽,王创业,刘猛,等. 耦合大功率微波加热的煤炭地下气化CRIP工艺研究[J]. 煤炭科学技术, 2024, 52(5): 324-334. GE Tengze, WANG Chuangye, LIU Meng, et al. Study on CRIP process of underground coal gasification coupled with high-power microwave heating[J]. Coal Science and Technology, 2024, 52(5): 324-334.
[96] DONG Maifan, FENG Lele, QIN Botao. Characteristics of coal gasification with CO2 after microwave irradiation based on TGA, FTIR and DFT theory[J]. Energy, 2023, 267: 126619.
[97] XIAO Yi , ZHANG Haoyu , LUO Guangqian , et al. Simulation of underground coal gasification ignition in deep coal seam based on transitional diffusion mechanism: Influence of inlet temperature and O2[J]. Energy, 2024, 288: 129735.
[98] LI Yulong, LIANG Jie, ZHAO Ze, et al. Pure oxygen condition forced oxidation ignition process of underground coal gasification[J]. Asia-Pacific Journal of Chemical Engineering, 2023, 18(3): e2881.
[99] 国家能源局. 国内首次实现地下千米煤层原位气化[EB/OL]. (2024-02-28) [2024-10-26]. https://baijiahao.baidu.com/s?id=1792133568170956479&wfr=spider&for=pc. [100] 张友军,张浩宇,张正,等. 煤炭地下气化点火阶段正庚烷着火及燃烧数值模拟研究[J]. 中国电机工程学报, 2024, 44(14): 5659-5666. ZHANG Youjun, ZHANG Haoyu, ZHANG Zheng, et al. Numerical simulation of N-heptane ignition and combustion in the ignition stage of underground coal gasification[J]. Proceedings of the CSEE, 2024, 44(14): 5659-5666.
[101] REN Xiangyi, WU Jianjun, WANG Cankun, et al. Research on property and burning behavior of flammable casing for underground coal gasification[J]. Heliyon, 2023, 9(12): e22232.
[102] 潘志勇,王建军,刘蕊祎,等. 煤炭地下气化多通道连续管结构设计[J]. 石油管材与仪器, 2023, 9(1): 44-47. PAN Zhiyong, WANG Jianjun, LIU Ruiyi, et al. Structural design of multi-channel coiled tubing for underground coal gasification[J]. Petroleum Tubular Goods & Instruments, 2023, 9(1): 44-47.
[103] 李宛嵘,杨宏智. 国内最长流体注入与测温一体化多通道连续管研制成功[EB/OL]. (2023-07-11) [2024-10-26]. https://esb.sxdaily.com.cn/pad/content/202307/11/content_813110.html. [104] 易同生,秦勇,周永峰,等. 煤炭地下气化项目技术经济评价研究进展述评[J]. 煤田地质与勘探, 2023, 51(7): 1- 16. YI Tongsheng, QIN Yong, ZHOU Yongfeng, et al. Research advances on the techno-economic evaluation of UCG projects[J]. Coal Geology & Exploration, 2023, 51(7): 1- 16.
[105] 易同生,梁杰,秦勇,等. 贵州省无井式煤炭地下气化关键技术工艺与工程示范[R]. 贵阳:贵州省煤田地质局, 2024. [106] 新疆维吾尔自治区自然资源厅. 新疆实现—"双气共采"[EB/OL]. (2024-02-28) [2024-10-26]. https://zrzyt.xinjiang.gov.cn/xjgtzy/mtxc/202403/06af2b3609ec4e1c90d2c6a99ee5f274.shtml.
计量
- 文章访问数: 90
- HTML全文浏览量: 30
- PDF下载量: 47