Summary of underground coal gasification field tests and suggestions for industrial development
-
摘要:
在实现碳达峰碳中和(“双碳”)目标和保障国家能源安全的双重需求驱动下,我国煤炭地下气化(UCG)迎来了新的历史发展机遇期。为科学制定技术攻关路线、加快产业化发展,按时间顺序梳理了煤炭地下气化试验历程,将其分为矿井式气化、直井/定向井气化、水平井气化3个发展阶段,探究了不同阶段推动气化技术革新的底层逻辑,从技术和非技术两个方面分析了未能产业化的原因并提出产业化发展建议。研究表明:(1)水平井+可控注入点后退气化工艺不仅能够有效规避浅层气化在地表沉降、淡水污染方面的风险,而且在扩大煤炭纵向开发范围、提高单井控煤量、提升粗煤气品质、保障连续气化方面具有优势,是当前和今后一个时期的主流技术路线。(2)我国是现场试验时间最长的国家,长期处于矿井式气化阶段,虽然我国中深层煤炭地下气化攻关试验刚起步,但是由于该技术攻关难度大、技术成熟度低,主要富煤国家在技术研发上基本属于同一起跑线,有希望成为我国钻井式气化技术弯道超车的新赛道。(3)技术适用性不强是造成矿井式、直井式气化产业化困难的主要技术原因,技术成熟度较低是制约水平井气化产业化的主要技术原因,长期稳产高产问题尚未得到彻底解决。(4)常规天然气低成本开发和页岩气革命的冲击,民众对浅层气化诱发环境污染的担忧,政府对煤炭地下气化的政策转向,是导致国外试验终止的主要非技术原因;发展规划长期空白、科研试验主体相对单一、科研投入不足、产业扶持政策未出台、联合创新机制未建立是阻碍我国气化产业化的非技术原因。提出我国UCG产业化建议:新时期要充分认识煤炭地下气化技术的复杂性和挑战性,按照“干成”“干好”两个维度,破解“长期稳产”和“高产优产”两个核心问题,通过同步推进科研攻关和现场试验不断提高技术成熟度,在生产端采用“先物理采气后化学气化”的梯级开发方式避免与煤层气开发竞争,在利用端积极探索与油气、新能源、煤化工融合发展模式以提高经济效益。作为一种“人造气藏”的颠覆性开发方式,煤炭地下气化攻关成功后能为其他矿产资源的流态化开发提供技术借鉴,助推我国化石能源非常规开发技术实现新跨越。
Abstract:China's underground coal gasification has entered a new historical development opportunity period, driven by the dual requirements of realizing the "carbon peaking and carbon neutrality goals" and ensuring national energy security. This paper analyzes the history of underground coal gasification in chronological order in order to scientifically formulate a technological breakthrough route and promote industrial development. The history is divided into three stages of development: mine type gasification, straight/directional well type gasification, and horizontal well type gasification. The underlying logic of promoting gasification technology innovation at different stages is explored. The reasons for the failure of industrialization are analyzed from the two aspects of technology and non-technology, and the countermeasures for industrialization are proposed. The findings of the study are as follows: (1)Horizontal well & controlled retracting injection point gasification process can not only effectively avoid the risks of shallow gasification in terms of surface subsidence and freshwater pollution, but also has the advantages of expanding the scope of vertical coal resource development, increasing the amount of coal control within two wells, improving the quality of crude gas, and ensuring continuous gasification. In the current and future period, this method is the mainstream technical route.(2)China has the longest field test period and has been in the stage of mine-type gasification for a long time. Although China's underground gasification of medium-deep coal test research is in the early stage, but due to the difficulty and low maturity of technology research, the major coal-rich countries in the medium-deep coal gasification technology research and development basically falls into the same pace. This technology has the potential to become a new track for China's drilling-type gasification technology to overtake the other countries. (3)Analysis shows that the poor applicability of technology is the main technical reason for the difficulty in industrialization of mine and vertical well gasification, and the low maturity of technology is the main technical reason that restricts the industrialization of horizontal well gasification. The long-term safety and high production issues have not been completely solved.(4)The low-cost development of conventional natural gas and the impact of the shale gas revolution, public concerns about environmental pollution caused by shallow gasification, and the government's policy shift towards underground coal gasification are the main non-technical reasons for the termination of foreign experiments; The long-term lack of development planning, relatively single scientific research and experimental subjects, insufficient scientific research investment, lack of industrial support policies, and lack of establishment of joint innovation mechanisms are non-technical reasons that hinder China's industrialization. The industrialization suggestion of UCG in China is put forward: it is necessary to fully understand the complexity and challenges of underground coal gasification technology in the new period. According to the two levels of “full accomplishment” and “high-quality accomplishment”, the core issues of "longterm stable production" and "high yield and excellent production" should be solved. Through synchronous promotion of scientific research and on-site experiments, the technological maturity should be continuously improved. On the production side, the cascade development method of "physical gas extraction followed by chemical gasification" should be adopted to avoid competition with the development of coalbed methane. On the utilization side, actively exploring the integration development mode with oil and gas, new energy and coal chemical industries to improve economic benefits.⑥As a subversive “artificial gas reservoir” development method, the success of underground coal gasification can provide technical reference for fluidization development of other mineral resources, and push China's unconventional fossil energy development technology to a new level.
-
-
[1] 国家统计局.中华人民共和国2022年国民经济和社会发展统计公报[EB/OL].(2023-02-28)[2023-07-07]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm. [2] 中国石油集团经济技术研究院. 2022年国内外油气行业发展报告[R]. 北京:中国石油集团经济技术研究院, 2023. [3] 邹才能,陈艳鹏,孔令峰,等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发, 2019, 46(2):195-204. ZOU Caineng, CHEN Yanpeng, KONG Lingfeng, et al. Underground coal gasification and its strategic ignificance to the development of natural gas industry in China[J]. Petroleum Exploration and Development, 2019, 46(2):195-204.
[4] 孔令峰,东振,陈艳鹏,等. 基于中深层煤原位清洁转化技术构建低碳能源生态圈[J]. 天然气工业, 2022, 42(9):166-175. KONG Lingfeng, DONG Zhen, CHEN Yanpeng, et al. Construction of low-carbon energy ecosystem based on in-situ clean conversion technology of medium-deep coal[J]. Natural Gas Industry, 2022, 42(9):166-175.
[5] 孔令峰,朱兴珊,展恩强,等. 深层煤炭地下气化技术与中国天然气自给能力分析[J]. 国际石油经济, 2018, 26(6):85-94. KONG Lingfeng, ZHU Xingshan, ZHAN Enqiang, et al. Suggestions on China's natural gas self-sufficiency by deep coal underground gasification technology[J]. International Petroleum Economics, 2018, 26(6):85-94.
[6] 杨震,孔令峰,孙万军,等. 油气开采企业开展深层煤炭地下气化业务的前景分析[J]. 天然气工业, 2015, 35(8):99-105. YANG Zhen, KONG Lingfeng, SUN Wanjun, et al. Prospects of underground deep-zone coal gasification performed by oil and gas production enterprises[J]. Natural Gas Industry, 2015, 35(8):99-105.
[7] PERKINS G. Underground coal gasification-Part I:Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67:158-187.
[8] PERKINS G. Underground coal gasification-Part II:Fundamental phenomena and modeling[J]. Progress in Energy and Combustion Science, 2018, 67:234-274.
[9] BHUTTO A W, BAZMI A A, ZAHEDI G. Underground coal gasification:From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1):189-214.
[10] SHAFIROVICH E, VARM A A. Underground coal gasification:a brief review of current status[J]. Industrial and Engineering Chemistry Research, 2009, 48(17):7865-7875.
[11] KHAN M M, MMBAGAJ P, SHIRAZI A. S., et al. Modelling Underground coal gasification-A review[J]. Energies, 2015, 8(11):12603-12668.
[12] 孔令峰,赵忠勋,赵炳刚,等. 利用深层煤炭地下气化技术建设煤穴储气库的可行性研究[J]. 天然气工业, 2016, 36(3):99-107. KONG Lingfeng, ZHAO Zhongxun, ZHAO Binggang, et al. Feasibility analysis on rebuilding coal-mine gas storage by using underground coal gasification (UCG) technology[J]. Natural Gas Industry, 2016, 36(3):99-107.
[13] 韩军,方惠军,喻岳钰, 等. 煤炭地下气化产业与技术发展的主要问题及对策[J]. 石油科技论坛, 2020, 39(3):50-59. HAN Jun, FANG Huijun, YU Yueyu, et al. Main problems and countermeasures of underground coal gasification industrial and technological development[J]. Oil Forum, 2020, 39(3):50-59.
[14] 秦勇,易同生,汪凌霞, 等. 面向项目风险控制的煤炭地下气化地质条件分析[J]. 煤炭学报, 2023, 48(1):290-306. QIN Yong, YI Tongsheng, WANG Lingxia, et al. Analysis of geological conditions for risk control of UCG project[J]. Journal of China Coal Society, 2023, 48(1):290-306.
[15] 秦勇,易同生,杨磊, 等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探, 2023, 51(7):17-25. QIN Yong, YI Tongsheng, YANG Lei, et al. Underground coal gasification field tests in China:History and prospects[J]. Coal Geology & Exploration, 2023, 51(7):17-25.
[16] 秦勇,易同生,周永锋, 等. 煤炭地下气化产业政策建设困境与破局对策[J]. 煤炭学报, 2023, 48(6):2498-2505. QIN Yong, YI Tongsheng, ZHOU Yongfeng, et al. Dilemma and countermeasure of policy construction of UCG industry[J]. Journal of China Coal Society, 2023, 48(6):2498-2505.
[17] 梁杰,王喆,梁鲲, 等. 煤炭地下气化技术进展与工程科技[J]. 煤炭学报, 2020, 45(1):393-402. LIANG Jie, WANG Zhe, LIANG Kun, et al. Progress and technology of underground coal gasification[J]. Journal of China Coal Society, 2020, 45(1):393-402.
[18] 柳少波,洪峰,梁杰. 煤炭地下气化技术及其应用前景[J]. 天然气工业, 2005, 25(7):119-122. LIU Shaobo, HONG Feng, LIANG Jie. Technology and application prospect of underground coal gasification[J]. Natural Gas Industry, 2005, 25(7):119-122.
[19] 梁杰,崔勇,王张卿, 等. 煤炭地下气化炉型及工艺[J]. 煤炭科学技术, 2013, 41(5):10-15. LIANG Jie, CUI Yong, WANG Zhangqing, et al. Gasifier typeand technique of underground coal gasification[J]. Coal Science and Technology, 2013, 41(5):10-15.
[20] 梁杰. 煤炭地下气化技术进展[J]. 煤炭工程, 2017, 49(8):1-4+8. LIANG Jie. Development overview of underground coal gasification technology. Coal Engineering[J], 2017, 49(8):1-4+8.
[21] 刘淑琴,张尚军,牛茂斐, 等. 煤炭地下气化技术及其应用前景[J]. 地学前缘, 2016, 23(3):97-102. LIU Shuqin, ZHANG Shangjun, NIU Maofei, et al. Underground coal gasification technology and its application prospect[J]. Geoscience Frontier, 2016, 23(3):97-102.
[22] 刘淑琴,梅霞,郭巍, 等. 煤炭地下气化理论与技术研究进展[J]. 煤炭科学技术, 2020, 48(1):90-99. LIU Shuqin, MEI Xia, GUO Wei, et al. Progress of underground coal gasification theory and technology[J]. Coal Science and Technology, 2020, 48(1):90-99.
[23] 刘淑琴,畅志兵,刘金昌. 深部煤炭原位气化开采关键技术及发展前景[J]. 矿业科学学报, 2021, 6(3):261-270. LIU Shuqin, CHANG Zhibing, LIU Jinchang. Key technologies and prospect for in-situ gasification mining of deep coal resources[J]. Journal of Mining Science and Technology, 2021, 6(3):261-270.
[24] 许浩,陈艳鹏,辛福东, 等. 煤炭地下气化面临的挑战与技术对策[J]. 煤炭科学技术, 2022, 50(1):265-274. XU Hao, CHEN Yanpeng, XIN Fudong, et al. Challenges faced by underground coal gasification and technical countermeasuresl[J]. Coal Science and Technology, 2022, 50(1):265-274.
[25] 葛世荣. 深部煤炭化学开采技术[J]. 中国矿业大学学报, 2017, 46(4):679-691. GE Shirong. Chemical mining technology for deep coal resources[J]. Journal of China University of Mining & Technology, 2017, 46(4):679-691.
[26] BLINDERMAN M S, KLIMENKO A Y. Underground Coal Gasification and Combustion[M]. Duxford:Woodhead Publishing, 2018:9-398.
[27] GREGG D W, EDGAR T F. Underground coal gasification[J]. The American Institute of Chemical Engineers, 1978, 24(5):753-781.
[28] LAZARENKO S N, KREININ E V. Underground coal gasification in Kuzbass:Present and future; institute of coal[R]. Kemerovo Siberian Branch of the Russian Academy of Sciences, 1994.
[29] 余力,刘淑琴. 关于煤炭地下气化新工艺LLTS-UCG实现商业化应用的思考[J]. 科技导报, 2003(2):51-54. YU Li, LIU Shuqin. Thoughts on commercial application of new underground coal gasification process LLTS-UCG[J]. Science and Technology Guide, 2003(2):51-54.
[30] WIATOWSKI M, KAPUSTA K, SWIADROWSKI J, et al. Technological aspects of underground coal gasification in the experimental Barbara mine[J]. Fuel, 2015, 159:454-462.
[31] MOCEK P, PIESZCZEK M, SWIADROWSKI J, et al. Pilot-scale underground coal gasification (UCG) experiment in an operating mine "Wieczorek" in Poland[J]. Energy, 2016, 111:313-321.
[32] JIANG LL, CHEN Z X, ALI S F. Modelling of reverse combustion linking in underground coal gasification[J]. Fuel, 2017, 207:302-311.
[33] BURTON E, RIEDMANN J, UPADHYE R. Best practices in underground coal gasification[R]. San Francisco:Lawrence Livermore National Laboratory, 2006.
[34] CAMP D W. A review of underground coal gasification research and development in the United States[R]. San Francisco:Lawrence Livermore National Laboratory, 2017.
[35] YANG D, KOUKOUZAS N, GREEN M, et al. Recent development on underground coal gasification and subsequent CO2 storage[J]. Journal of the Energy Institute, 2016, 89:469-484.
[36] HILL R W, SHANNON M J. The controlled retracting injection point (CRIP) system:A modified stream method for in situ coal gasification[R]. Berkeley:Lawrence Livermore National Laboratory, 1981.
[37] RANADE V, MAHAJANI S, SAMDANI G. Computational modeling of underground coal gasification[M]. Boca Raton:CRC Press, 2019:21-56.
[38] STEVE DENNIS D. Rocky Mountain 1 Underground Coal Gasification Test Project Hanna, Wyoming[R]. Washington:Washington Group International, 2006.
[39] GREEN M B. Underground coal gasifications:A Joint European Trial in Spain[R]. London:Department of Trade and Industry Technology (DTI), 1999.
[40] PIRARD J P, BRASSEUR A, COEME A, et al. Results of the tracer tests during the El Tremedal underground coal gasification at great depth[J]. Fuel, 2000, 79(5):471-478.
[41] GREEN M. Recent developments and current position of underground coal gasification[J]. Proceedings of the Institution of Mechanical Engineers Part A. Journal of Power and Energy, 2018, 232(1):39-46.
[42] 张金华,张梦媛,陈艳鹏,等. 煤炭地下气化现场试验进展与启示[J]. 煤炭科学技术, 2022, 50(2):213-222. ZHANG Jinhua, ZHANG Mengyuan, CHEN Yanpeng, et al. Process and revelation of underground coal gasification field test[J]. Coal Science and Technology, 2022, 50(2):213-222.
[43] MALLETT C W. Environmental controls for underground coal gasification[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2017, 232(1):47-55.
[44] Alberta Energy Regulator. AER investigation report:Swan Hills synfuels ltd well blowout October 10, 2011[R]. Calgary:Alberta Energy Regulator, 2014.
[45] KASANI A H, CHALATURNYK J R. Coupled reservoir and geomechanical simulation for a deep underground coal gasification project[J]. Journal of Natural Gas Science and Engineering, 2017, 37:487-501.
[46] Alberta Innovates. Final report of Swan Hills underground coal gasification technology research and development project[R]. Calgary:Alberta Innovates, 2012.
[47] 孔令峰,张军贤,李华启,等. 我国中深层煤炭地下气化商业化路径[J]. 天然气工业, 2020, 40(4):156-165. KONG Lingfeng, ZHANG Junxian, LI Huaqi, et al. Commercialization path of medium deep underground coal gasification in China[J]. Natural Gas Industry, 2020, 40(4):156-165.
[48] 东振,任博,陈艳鹏, 等. 中深层煤炭地下气化的气化腔安全宽度计算方法[J/OL]. 煤炭科学技术. 1-13[2023-07-23]. DOI:10. 13199/j. cnki. cst. 2023-0444. DONG Zhen, REN Bo, CHEN Yanpeng, et al. Calculation method of safe width of gasification cavity for medium-deep underground coal gasification[J/OL]. Coal Science and Technology. 1-13[2023-07-23]. DOI:10. 13199/j. cnki. cst. 2023-0444.
[49] 张明,王世鹏. 国内外煤炭地下气化技术现状及新奥攻关进展[J]. 探矿工程(岩土钻掘工程), 2010, 37(10):14-16. ZHANG Ming, WANG Shipeng. Technical situation of underground coal gasification in China and abroad and the study progress of ENN[J]. Exploration Engineering (Rock and Soil Drilling and Tunneling Engineering), 2010, 37(10):14-16.
[50] 韦波,李鑫,田继军, 等. 国内外煤炭地下气化试验及其对新疆煤炭地下气化的启示[J]. 煤炭科技, 2022, 43(4):27-35. WEI Bo, LI Xin, TIAN Jijun, et al. Underground coal gasification trials at home and abroad and its enlightenment to Xinjiang underground coal gasification[J]. Coal science & technology magazine, 2022, 43(4):27-35.
[51] CAMP D W, WHITE J A. Underground coal gasification:An overview of groundwater contamination hazards and mitigation strategies[R]. San Francisco:Lawrence Livermore National Laboratory, 2015.
[52] 黄赞,周瑞琦,杨焦生, 等. 煤层气开发井网样式和井距优化研究-以鄂尔多斯盆地大宁区块为例[J/OL]. 煤炭科学技术. 1- 14[2023-07-21]. https://doi.org/10.13199/j.cnki.cst.2022-1568. HUANG Zan, ZHOU Ruiqi, YANG Jiaosheng, et al. Study on optimization of well pattern and well spacing for CBM development:Taking Daning block as an example[J/OL]. Coal Science and Technology. 1-14[2023-07-21]. https://doi.org/10.13199/j.cnki.cst2022-1568.
[53] 朱庆忠,李志军,李宗源, 等. 复杂地质条件下煤层气高效开发实践与认识-以沁水盆地郑庄区块为例[J]. 煤田地质与勘探, 2023, 51(1):131-138. ZHU Qingzhong, LI Zhijun, LI Zongyuan, et al. Practice and cognition of efficient CBM development under complex geological conditions:A case study of Zhengzhuang Block, Qinshui Basin[J]. Coal Geology & Exploration, 2023, 51(1):131-138.
[54] 孙焕泉,刘慧卿,王海涛, 等. 中国稠油热采开发技术与发展方向[J]. 石油学报, 2022, 43(11):1664-1674. SUN Huanquan, LIU Huiqing, WANG Haitao, et al. Development technology and direction of thermal recovery of heavy oil in China[J]. Acta Petrolei Sinica, 2022, 43(11):1664-1674.
[55] 谢和平,鞠杨,高明忠, 等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报, 2018, 43(5):1210-1219. XIE Heiping, JU Yang, GAO Mingzhong, et al. Theories and technologies for in-situ fluidized mining of deep underground coal resources[J]. Journal of China Coal Society, 2018, 43(5):1210-1219.
[56] 东振,张梦媛,陈艳鹏, 等. 三塘湖-吐哈盆地富油煤赋存特征与资源潜力分析[J]. 煤炭学报, 2023, 48(10):3789-3805. DONG Zhen, ZHANG Mengyuan, CHEN Yanpeng, et al. Analysis on the occurrence characteristics and resource potential of tar-rich coal in Santanghu and Turpan-Hami Basins[J]. Journal of China Coal Society, 2023, 48(10):3789-3805.
计量
- 文章访问数: 107
- HTML全文浏览量: 28
- PDF下载量: 52