Frequency domain induced polarization response characteristics of waterbearing body ahead of coal mine tunneling face
-
摘要: 【目的】频率域激电法因能观测地质体的频散率和复电阻率等关键电性参数,有效降低电性异常的多解性,已成为煤矿巷道掘进电法超前探水技术的主要发展方向。然而,目前该方法主要沿巷道轴向观测数据,导致对巷道前方地电信息的捕捉能力不足,存在含水异常体方位判识不清等实际难题。因此,探究巷道频率域激电参数的超前响应特征及其各向异性,对于改进数据观测方式,进一步增强含水体判识精度具有重要的理论与实际意义。【方法】首先,结合矿井巷道实际场景,提出了三方向激电视参数观测方式。其次,以全空间无限大板状导电体作为巷道掘进前方含水体模型,推导了三方向激电视参数响应表达式;最后,通过数值计算和理论分析等方法,研究了三方向激电视参数随模型方位角、倾角及其至场源距离等产状参数的变化特征。【结果】结果表明:(1)巷道轴向视频散率和视复电阻率的曲线类型分别为K(低-高-低)型和H(高-低-高)型,基本不受模型参数变化的影响,电性异常始终表现为“低阻高频散”特征。(2)垂直巷道两帮方向的视频散率曲线类型在模型位于巷道正前方时呈现K型,其他为反比例函数型;视复电阻率曲线类型则在模型偏向巷道左、右两侧时分别呈现K型和H型。(3)垂直巷道顶底板方向的视频散率曲线类型在模型处于直立时呈现K型;其他表现为反比例函数型;视复电阻率曲线类型在模型倾向巷道前方和后方时分别呈现K型和H型。(4)三方向激电视参数的异常幅值及其探测极距显著受到模型参数的影响,尤其是异常极值点或阶跃点对应的探测极距,随模型至场源距离的变化而发生显著变化。【结论】三方向激电视参数对板状含水体模型的响应表现出显著的各向异性,其中巷道轴向的激电视参数对模型产状的敏感性差,是导致目前实际探测电性异常方位判识精度偏低的主要原因;垂直巷道两帮的激电视参数对模型方位敏感;垂直巷道顶底板方向的激电视参数对模型倾向敏感。与现有观测方法相比,三方向观测方法能为探测巷道掘进前方含水体提供更为丰富的电性信息,有助于提升含水体的空间定位精度。Abstract: [Objective] The frequency-domain induced polarization (FDIP) method has emerged as a pivotal direction in the advancement of water detection technology for coal mines. This is attributed to its capability to measure critical electrical parameters, such as chargeability and complex resistivity of geological bodies, and to mitigate the ambiguity in interpreting electrical anomalies. However, the current implementation of FDIP primarily focuses on data along the tunnel axis, constraining its capacity to capture geoelectric information beyond the tunnel's immediate path. This limitation leads to practical challenges, including the unclear identification of the orientation of water-bearing anomaly bodies. [Methods] To address these challenges, we propose a three-directional FDIP parameter observation method tailored to the specific conditions of mine tunnels. We modeled an infinite plate-shaped conductor in a full-space to represent a water-bearing fault ahead of the tunnel excavation and derived the response expressions for the threedirectional FDIP parameters. Subsequently, we analyzed the variation characteristics of these parameters with respect to model azimuth, dip angle, and distance from the source using numerical calculations and theoretical analysis. [Results] Our findings reveal that: (1) the apparent chargeability and apparent complex resistivity curves along the tunnel axis exhibit K-type (low-high-low) and H-type (high-low-high) patterns, respectively, and are largely invariant to model parameter changes, with electrical anomalies consistently displaying 'low resistivity and high chargeability' characteristics; (2) the apparent chargeability curve perpendicular to the tunnel sides is K-type when the model is directly ahead of the tunnel, and inverse function type otherwise, while the apparent complex resistivity curve is Ktype when the model is offset to the left and H-type when offset to the right; (3) for the direction perpendicular to the tunnel ceiling and floor, the apparent chargeability curve is K-type when the model is upright, and inverse function type otherwise, with the apparent complex resistivity curve being K-type when the model is inclined forward and H-type when inclined backward; (4) the anomaly amplitude and detection ranges of the three-directional FDIP parameters are significantly influenced by model parameters, particularly the detection range at extreme or step points, which varies markedly with the model's distance from the field source. [Conclusions] The three-directional FDIP parameters demonstrate a pronounced anisotropic response to a plate-shaped water-bearing body model. The sensitivity of FDIP parameters along the tunnel axis to the model's attitude is relatively low, contributing to the current challenges in accurately identifying the orientation of electrical anomalies during exploration. In contrast, FDIP parameters perpendicular to the tunnel sides are sensitive to the model's azimuth, and those perpendicular to the tunnel's roof and floor are sensitive to the model's dip. This three-directional observation method provides richer electrical information for detecting water bodies ahead of tunnel excavation compared to existing methods, thereby enhancing the spatial positioning accuracy of water bodies.
-
-
[1] 张平松,李圣林,邱实,等. 巷道快速智能掘进超前探测技术与发展[J].煤炭学报,2021,46(7):2158–2173. ZHANG Pingsong,LI Shenglin,QIU Shi,et a1. Advance detection technology and development of fast intelligent roadway drivage[J]. Journal of China Coal Society,2021,46(7):2158–2173.
[2] 杨少文,张平松,许时昂,等. 矿井直流电法技术应用现状与展望[J]. 工矿自动化,2023,49(8):20-29. YANG Shaowen,ZHANG Pingsong,XU Shi’ang,et a1. Status and prospect of the application of mine DC electrical method technology[J]. Journal of Mine Automation,2023,49(8):20-29.
[3] 张伟杰. 动态定向电场激励法煤巷掘进超前探测技术研究[D]. 北京:中国矿业大学(北京),2012.ZHANG Weijie. Study on advanced detection technology of coal roadway driving by dynamic directional electric field excitation method[D]. Beijing:China University of Mining & Technology,Beijing,2012. [4] 胡荣杰,刘盛东,童世杰,等. 孔巷联合并行电法超前探测技术研究[J]. 中国煤炭地质,2024,36(6):68-71. HU Rongjie,LIU Shengdong,TONG Shijie,et al. Research on advanced detection technology with parallel electrical method on hole-roadway[J]. Coal Geology of China,2024,36(6):68-71.
[5] 石学锋,韩德品. 直流电阻率法在煤矿巷道超前探测中的应用[J]. 煤矿安全,2012,43(5):104-107. SHI Xuefeng,HAN Deping. The application of DC resistivity method in coal mine tunnel advanced exploration[J]. Safety in Coal Mines,2012,43(5):104-107.
[6] 阮百尧,邓小康,刘海飞,等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报,2009,52(1):289–296. RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2009,52(1):289–296.
[7] 杜毅博,刘希高,张金涛,等. 电场约束法煤巷综掘超前探测数值模拟研究[J]. 地球物理学进展,2015,30(3):1390-1395. DU Yibo,LIU Xigao,ZHANG Jintao,et al. Numerical simulation for advanced detection of comprehensive tunneling in coal roadway based on the electric field constraint method[J]. Progress in Geophysics,2015,30(3):1390-1395.
[8] 刘希高,凌春晖,刘志民,等. 矿用聚焦双频激电法电场扫描探测方法[J]. 煤炭学报,2016,41(9):2388–2395.LIU Xigao,LING Chunhui,LIU Zhimin,et al. Focusing dual-frequency induced polarization on electric field scanning method in coal mine roadway[J]. Journal of China Coal Society,2016,41(9):2388–2395. [9] 刘志民,韩雷,张伟杰,等. 煤巷多点电流源双频激电法超前扫描探测技术[J]. 煤田地质与勘探,2017,45(4):149–156.LIU Zhimin,HAN Lei,ZHANG Weijie,et al. Study on advanced scanning detection technology of dual-frequency induced polarization method with multi-point current sources in coal mine roadway[J]. Coal Geology & Exploration,2017,45(4):149–156. [10] 刘志民,孟彩茹,李冰,等. 煤巷聚焦多点电源探测电场超前扫描控制策略[J]. 煤田地质与勘探,2019,47(3):195–200. LIU Zhimin,MENG Cairu,LI Bing,et al. Detection electric field control strategy for advanced scanning detection of focusing multipoint current sources in coal mine roadway[J]. Coal Geology & Exploration,2019,47(3):195–200.
[11] 陈海文,叶益信,杨烁健,等. 基于非结构有限元的电阻率超前探测中旁侧异常影响特征研究[J]. 物探与化探,2023,47(4):975-985. CHEN Haiwen,YE Yixin,YANG Shuojian,et a1. A study on the influence of side anomalies in resistivity-based advance detection based on an unstructured finite element method[J]. Geophysical and Geochemical Exploration,2023,47(4):975-985.
[12] 黄俊革,阮百尧,王家林. 坑道直流电阻率法超前探测的快速反演[J]. 地球物理学报,2007,50(2):619–624. HUANG Junge,RUAN Baiyao,WANG Jialin. The fast inversion for advanced detection using DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2007,50(2):619–624.
[13] XIE Haijun,LI Jingrui,Li Zhiqiang,et al. Analysis of the influence characteristics and correction effect of the mine direct current method in advance detection of roadway cavities[J]. Earth Sciences Research Journal,2023,27(2):183-190.
[14] 马炳镇,李貅. 矿井直流电法超前探中巷道影响的数值模拟[J]. 煤田地质与勘探,2013,41(1):78–81. MA Bingzhen,LI Xiu. Roadway influences on advanced DC detection in underground mine[J]. Coal Geology & Exploration,2013,41(1):78–81.
[15] 刘洋,吴小平. 巷道超前探测的并行Monte Carlo方法及电阻率各向异性影响[J]. 地球物理学报,2016,59(11):4297–4309. LIU Yang,WU Xiaoping. Parallel Monte Carlo method for advanced detection in tunnel incorporating anisotropic resistivity effect[J]. Chinese Journal of Geophysics,2016,59(11):4297–4309.
[16] 胡雄武,张平松. 坑道隐伏陷落柱直流电阻率法超前探测分析[J]. 地球物理学进展,2019,34(3):1176–1183. HU Xiongwu,ZHANG Pingsong. Analysis of hidden collapse column ahead of tunneling face detected by DC resistivity method[J]. Progress in Geophysics,2019,34(3):1176–1183.
[17] 韩德品,石学锋,石显新,等. 煤矿老窑积水巷道直流电法超前探测异常特征研究[J]. 煤炭科学技术,2019,47(4):157–161.HAN Depin,SHI Xuefeng,SHI Xianxin,et al. Study on anomaly characteristics of in-advance DC electric detection of water-accumulated roadway in abandoned coal mines[J]. Coal Science and Technology,2019,47(4):157–161. [18] 王鹏,鲁晶津,王信文. 再论巷道直流电法超前探测技术的有效性[J]. 煤炭科学技术,2020,48(12):257–263. WANG Peng,LU Jingjin,WANG Xinwen. Restudy on effectivty of direct current advance detection method in roadway[J]. Coal Science and Technology,2020,48(12):257–263.
[19] 李飞,张永超,连会青,等. 掘进工作面直流电法超前探测技术问题探讨[J]. 煤炭科学技术,2020,48(12):250–256. LI Fei,ZHANG Yongchao,LIAN Huiqing,et al. Discussion on problems of direct current advance detection method in roadway driving face[J]. Coal Science and Technology,2020,48(12):250–256.
[20] 李进. 多点源矿井直流电法超前探测有限元正演数值模拟[D]. 西安:西安科技大学,2021.LI Jin. Finite element forward numerical simulation of advanced detection by DC method in multi-point source mine[D]. Xi’an:Xi’an University of Science and Technology,2021. [21] 周官群,王亚飞,陈兴海,等. 掘进工作面“三角锥” 型直流电法超前探测正演研究[J]. 煤炭学报,2022,47(8):3015–3023. ZHOU Guanqun,WANG Yafei,CHEN Xinghai,et al. Research on forward modeling of “triangular cone” type direct current method for heading detection[J]. Journal of China Coal Society,2022,47(8):3015–3023.
[22] 韩丹. 坑道三方向视电阻率超前探测响应特征研究[D]. 淮南:安徽理工大学,2022.HAN Dan. Study on response characteristics of advanced detection of three-dimensional apparent resistivity in tunnel[D]. Huainan:Anhui University of Science & Technology,2022. [23] 刘斌,李术才,聂利超,等. 隧道含水构造直流电阻率法超前探测三维反演成像[J]. 岩土工程学报,2012,34(10):1866-1876. LIU Bin,LI Shucai,NIE Lichao,et al. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1866-1876.
[24] 胡雄武,张平松,吴荣新,等. 矿井多极供电电阻率法超前探测技术研究[J]. 地球物理学进展,2010,25(5):1709–1715.HU Xiongwu,ZHANG Pingsong,WU Rongxin,et al. Study on the advanced detection technique by multi-electrode direct current resistivity in mines[J]. Progress in Geophysics,2010,25(5):1709–1715. [25] 张平松,李永盛,胡雄武. 巷道掘进直流电阻率法超前探测技术应用探讨[J]. 地下空间与工程学报,2013,9(1):135–140. ZHANG Pingsong,LI Yongsheng,HU Xiongwu. Application and discussion of the advanced detection technology with DC resistivity method in tunnel[J]. Chinese Journal of Underground Space and Engineering,2013,9(1):135–140.
[26] XIE Haijun,LI Wanlu,LI Jin,et al. A finite element numerical simulation analysis of mine direct current method’s advanced detection under varied field sources[J]. Frontiers in Earth Science,2023,11:1273698.
[27] DENG Xiaokang,LIU Jianxin,LIU Haifei,et al. 3D finite element numerical simulation of advanced detection in roadway for DC focus method[J]. Journal of University of Science and Technology Beijing,2013,23(7):2187-2193.
[28] 许少毅,卢文庭,王承涛,等. 新型煤矿巷道随掘超前探测方法研究[J]. 仪器仪表学报,2023,44(4):206-218. XU Shaoyi,LU Wenting,WANG Chengtao,et al. Novel advanced detection method with excavation in coal mine roadway[J]. Chinese Journal of Scientific Instrument,2023,44(4):206-218.
[29] 李宇腾,程建远,鲁晶津,等. 基于人工神经网络的矿井直流电阻率法超前预测方法[J]. 煤田地质与勘探,2023,51(6):185–193. LI Yuteng,CHENG Jianyuan,LU Jingjin,et al. Direct current resistivity method for the advance prediction of water Hazards in coal mines based on an artificial neural network[J]. Coal Geology & Exploration,2023,51(6):185–193.
[30] 许少毅,卢文庭,王承涛,等. 随掘连续超前探测异常体辨识成像研究[J]. 仪器仪表学报,2023,44(11):159-175. XU Shaoyi,LU Wenting,WANG Chengtao,et al. Research on anomaly identification imaging with continuous advanced detection of excavation[J]. Chinese Journal of Scientific Instrument,2023,44(11):159-175.
[31] 李飞. 掘进巷道直流电法与瞬变电磁超前探测联合反演研究[D]. 青岛:山东科技大学,2013.LI Fei. Study on joint inversion of direct current method and transient electromagnetic advanced detection in driving roadway[D]. Qingdao:Shandong University of Science and Technology,2013. [32] 胡雄武,徐标,张平松,等. 采煤工作面底板水双频激电法数值仿真与探测试验[J]. 煤炭学报,2022,47(8):3024–3036.HU Xiongwu,XU Biao,ZHANG Pingsong,et al. Numerical simulation and exploration test for water from the floor strata of coal-mining face using dual-frequency induced polarization method[J]. Journal of China Coal Society,2022,47(8):3024–3036. -
期刊类型引用(6)
1. 白雪亮. 神东矿区复合顶板无煤柱自成巷技术的研究及应用. 中国煤炭. 2025(01): 146-157 . 百度学术
2. 刘文学,王晓利,刘会会,曹晓凡,何斌,刘军峰,常庆,李昂. 大采高工作面柔模沿空留墙掘巷技术. 西安科技大学学报. 2024(01): 94-103 . 百度学术
3. 张卫,陈玉涛,倪倩,臧立岩. 神南矿区“110工法”采空区覆岩稳定性研究. 矿业安全与环保. 2024(02): 106-110 . 百度学术
4. 冉霞. 深部过断层巷道围岩变形特征及支护技术研究. 能源与环保. 2024(09): 241-245 . 百度学术
5. 李振华,任梓源,杜锋,任浩,王文强. 大巷煤柱工作面过空巷矿压规律及控制技术. 煤田地质与勘探. 2024(10): 141-152 . 本站查看
6. 魏恒征,冯宇,张风达. 石泉煤业特厚煤层巷道掘进层位确定及煤柱合理留设宽度研究. 陕西煤炭. 2024(12): 48-51 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 17
- HTML全文浏览量: 1
- PDF下载量: 5
- 被引次数: 7