煤系锂及锂同位素研究进展

张昀, 魏迎春, 曹代勇, 李新, 靳亮亮, 董博, 王鑫

张昀, 魏迎春, 曹代勇, 李新, 靳亮亮, 董博, 王鑫. 煤系锂及锂同位素研究进展[J]. 煤田地质与勘探.
引用本文: 张昀, 魏迎春, 曹代勇, 李新, 靳亮亮, 董博, 王鑫. 煤系锂及锂同位素研究进展[J]. 煤田地质与勘探.
ZHANG Yun, WEI Yingchun, CAO Daiyong, LI Xin, JIN Liangliang, DONG Bo, WANG Xin. Research progress of lithium and lithium isotopes in coal-bearing strata[J]. COAL GEOLOGY & EXPLORATION.
Citation: ZHANG Yun, WEI Yingchun, CAO Daiyong, LI Xin, JIN Liangliang, DONG Bo, WANG Xin. Research progress of lithium and lithium isotopes in coal-bearing strata[J]. COAL GEOLOGY & EXPLORATION.

 

煤系锂及锂同位素研究进展

基金项目: 

国家自然科学基金项目(42472231,42372187);宁夏2023年地质事业发展专项项目(640000233000000011005)

详细信息
    作者简介:

    张昀,1996年生,男,山西太原人,博士研究生。E-mail: Yun02200059@outlook.com

    通讯作者:

    魏迎春,1977年生,女,山东巨野人,博士,教授,博士生导师。E-mail: wyc@cumtb.edu.cn

  • 中图分类号: P618

Research progress of lithium and lithium isotopes in coal-bearing strata

  • 摘要: 【意义】 锂(Li)作为新兴产业的重要战略金属,因其同位素显著的质量分馏效应,Li同位素成为重要的地球化学示踪工具。近年来,煤系Li矿产已成为战略性金属矿产资源勘探的重点。研究煤系Li同位素的组成及变化有助于揭示Li的来源、迁移与富集过程,并为煤系Li矿产的勘探与开发提供理论依据。【进展】 从煤系Li的基本特征、同位素组成特征及分馏机制、煤系Li测试方法与提取分离及Li同位素测试分析技术3个方面总结了煤系Li及其同位素的研究进展。(1) Li在地幔和地壳中广泛分布,具有强烈的流体活动性。(2)两种天然稳定同位素(6Li与7Li)因扩散速率差异及相对质量差,表现出显著的分馏效应,成为关键的地球化学示踪工具。(3)我国煤系Li矿产主要分布于华北石炭—二叠纪和华南晚二叠世煤系中,Li元素主要赋存于次生黏土矿物中,富集过程受沉积成岩、微生物活动、构造作用、岩浆热液活动及地下水迁移等多种因素的共同影响。(4)煤系Li同位素的分馏主要受温度、风化作用、变质作用及次生黏土矿物生成等因素的影响。煤系样品Li含量的测定方法已较为成熟,高精度Li同位素测试技术为Li同位素的广泛应用提供了可能。MC-ICP-MS已初步应用于煤系Li同位素分馏机制的研究,但煤系样品原位微区Li同位素测试技术尚处于探索阶段。由于含煤地层中Li的赋存载体成分和结构复杂,迫切需要开发煤系Li同位素原位分析标准样品和建立测试标准。煤系Li资源分离与提取的关键在于浸出效率的提高和浸出液中Li的提纯、回收。【展望】 当前研究存在对于煤系Li同位素分馏机制探索尚浅、测试方法可能存在质量歧视效应、缺乏原位分析标准样品和模拟实验验证等一些不足。提出煤系Li及其同位素的未来发展趋势,包括煤系Li运移的动态过程与富集机制、高精度Li同位素测试分析技术的开发、煤系Li同位素分馏与沉积热演化过程的耦合机制研究和煤系Li资源的分离提取与回收研究等。
    Abstract: [Significance] Lithium (Li), as a strategic metal in emerging industries, has become a significant geochemical tracer due to its pronounced isotopic fractionation effect. In recent years, lithium deposits in coal-bearing strata have emerged as a focus area in the exploration of strategic metal mineral resources. Investigating the composition and variation of lithium isotopes in coal-bearing strata helps to elucidate the sources, migration, and enrichment processes of lithium, providing a theoretical foundation for the exploration and development of lithium deposits in coal-bearing strata. [Advances] This study summarizes the research progress of lithium and its isotopes in coal-bearing strata from three aspects: basic characteristics, isotope composition and fractionation mechanisms, analytical methods for lithium content determination, extraction and separation techniques, and lithium isotope analysis. The findings indicate that lithium is widely distributed in the mantle and crust, exhibiting strong fluid activity. The two natural stable isotopes (6Li and 7Li) display significant fractionation effects due to differences in diffusion rates and relative mass, making them key geochemical tracer tools. Lithium deposits in coal-bearing strata are mainly found in the Carboniferous-Permian coal-bearing strata of North China and the Late Permian coal-bearing strata of South China. Lithium is primarily hosted in secondary clay minerals, and its enrichment is influenced by various factors such as sedimentary diagenesis, microbial activity, tectonic movements, magmatic hydrothermal activity, and groundwater migration. Lithium isotope fractionation in coal-bearing strata is mainly influenced by factors such as temperature, weathering, metamorphism, and the formation of secondary clay minerals. The methods for determining lithium content in coal-bearing strata samples have become relatively mature, and high-precision lithium isotope testing technologies have made the widespread application of lithium isotopes possible. MC-ICP-MS has been preliminarily applied to the study of lithium isotope fractionation mechanisms in coal-bearing strata, but in situ micro-area lithium isotope testing technology is still in the exploratory stage. Due to the complex components and structures of lithium-bearing carriers in coal-bearing strata, there is an urgent need to develop in-situ analytical standard samples for lithium isotopes in coal-bearing strata and to establish standardized analytical protocols. The focus of the separation and extraction technology for lithium resources in coal-bearing strata is improving leaching efficiency and the purification and recovery of lithium from the leachate. [Prospects] Current research on the fractionation mechanisms of lithium isotopes in coal-bearing strata remains insufficient, with several limitations, including a superficial understanding of the fractionation mechanisms, the quality discrimination effect in testing methods, and the lack of in situ analysis standard samples and simulation experiment validation. Future research trends for lithium and its isotopes in coal-bearing strata include the study of the dynamic processes and enrichment mechanisms of lithium migration in coal-bearing strata, the development of high-precision lithium isotope testing and analysis technologies, the investigation of the coupling mechanism between lithium isotope fractionation and sedimentary thermal evolution processes, and the separation, extraction and recovery of lithium resources in coal-bearing strata.
  • 据不完全统计,我国华北型石炭–二叠纪煤田煤层受底板岩溶水害威胁的煤炭资源储量高达570亿t。煤层底板高承压含水层水害已经成为新时期我国煤炭资源安全高效开采的主要制约因素[1]。目前,采用注浆技术对底板隔水层加固和含水层改造是煤层底板水害防治的主要手段[2]

    以往煤层底板含水层注浆改造一直采用常规直孔注浆,但由于钻孔钻遇含水层孔段较短,需要布置较为密集的钻孔来达到改造目的[3-6],而且必须依托井巷工程实施[7]。同时,注浆工艺也面临注浆盲区大、目标位置不准确、注浆效果差等问题,使巷道掘进过程中水害难以高效探查与治理。2008年,董书宁等[8]首次提出利用水平定向钻孔进行煤层底板注浆加固的理念,发明煤层底板注浆加固水平定向钻孔的施工方法,大幅增加有效注浆孔段长度,提高钻孔揭露裂隙带、含水体面积,减小注浆盲区,提高注浆改造效率[9]。另外,利用水平定向钻注浆可扩大单孔探查或注浆面积,减少钻进机械搬运工程,降低钻探工程对矿井生产进度影响,对煤层底板进行超前探查和治理[10]

    2011年,中煤科工西安研究院(集团)有限公司(简称西安研究院)首次将水平定向钻技术引入到煤层底板水害超前注浆治理中,在河南能化集团赵固一矿11151工作面成功完成现场底板注浆加固试验。随后,超前区域治理理念在河北邯邢矿区、安徽淮北矿区煤层底板水害治理中大面积推广应用,并迅速发展到断层、陷落柱等导水构造治理,形成了集超前区域探查与面状治理于一体的煤层底板水害超前区域治理技术[11-12]。该技术先后在河北峰峰矿区九龙、陕西焦坪矿区桑树坪[13]、安徽淮北矿区朱庄等煤矿[14] 成功应用,并进一步推广至安徽皖北[15]和淮南[16]、山东黄河北[17]、河北邯邢[18]、河南焦作[19]等大水矿区,取得了良好的治理效果,使水平定向钻技术广泛应用于矿井水害防治工程[20]。但在工程实践中,普遍面临水平定向钻孔浆液运移规律不明、钻遇隐伏导水通道判识与治理难度高、注浆效果检验技术不可靠等问题,且井下定向钻机钻进能力无法满足高强度、高水压灰岩含水层钻进和安全需求。

    因此,针对上述问题,笔者聚焦水平孔浆液运移规律、超前区域注浆改造模式和分类标准、灰岩地层水平定向钻高效钻进工艺、隐伏导水通道超前判识治理、底板水害超前治理关键参数控制工艺、注浆效果检验与评价等方面进行深入研究,形成煤层底板水害超前区域治理技术体系,以期为现场工程实践提供重要的理论和技术支撑。

    针对华北型煤田煤层底板石炭–二叠系太原组薄层灰岩或奥陶系灰岩(简称奥灰)岩溶含水层突水威胁,突破常规井下直孔注浆的“被动式”局部工作面防治理念,采用水平定向钻从地面或井下对底板岩溶含水层进行超前区域(多个工作面)注浆改造,实现底板水害的“主动式”防治。该技术有效避免了井下施工位置限制和影响采掘作业等问题,通过多个工作面整体超前治理实现了水文地质条件的区域性改变,避免了井下局部单个工作面改造后的绕流现象。

    煤层底板超前区域治理技术涉及采矿工程、水文地质、工程地质、钻探工程等专业学科,是一项复杂的系统工程,面临众多技术难题,包括注浆层位选择、灰岩地层水平孔高效钻进工艺、隐伏导水通道判识、关键注浆参数控制工艺、注浆效果评价技术等,必须进行超前区域注浆治理改造模式、水平孔倾斜裂隙浆液扩散规律、注浆效果评价方法等理论研究,开发相关关键技术,才能为煤层底板超前区域治理提供理论和技术支撑。西安研究院经过近10年的研究开发和工程实践,创建了煤层底板水害超前区域治理的理论框架和关键技术(图1)。具体包括煤层底板水害超前区域治理模式分类和选择准则,实现超前区域的精准治理;形成灰岩地层水平定向钻高效钻进工艺和隐伏导水通道超前判识治理技术,实现坚硬灰岩地层钻孔施工和隐伏通道的精准探查和治理;形成底板水害超前治理关键参数控制工艺,实现超前区域治理关键注浆参数的科学确定;提出多指标的注浆效果定性与定量相结合的检验与评价方法。

    图  1  煤层底板超前区域治理理论框架与技术体系
    Figure  1.  Theoretical framework and technical system of advanced regional control coal seam floor

    现阶段,我国煤层底板水害超前区域治理工程已经形成了定向钻进、常规钻进、径向射流结合的施工方式,及薄层太原组灰岩和厚层奥陶系灰岩的含水层治理模式,其具体定义为以底板水害防治与带压开采为目标,考虑基础水文地质条件、治理区地面施工条件、治理层位选择和钻孔钻进方式,从工程施工方案选择角度构建技术可靠、经济合理的注浆治理技术与方案的组合体系[21-22]

    1) 指 标

    超前区域治理模式分类指标包括施工位置、层位选择、钻进方式。其中施工位置可选取地面钻孔施工结合地面浆液、井下钻孔施工结合地面浆液、井下钻孔施工结合井下浆液3种配置方案;改造层位包括太原组薄层灰岩含水层和奥陶系巨厚灰岩含水层;钻进方式包括定向钻进和径向射流2种钻进方式。

    2) 模 式

    采用交叉分类原则对各指标进行交叉组合分类,当3个指标连接形成闭合环路径时,可提炼形成治理模式,据此得到5种超前区域治理模式(表1)。

    表  1  超前区域治理注浆改造模式[21]
    Table  1.  Advanced regional control grouting transformation mode[21]
    施工位置C层位选取L钻进方式D治理模式M
    地面施工C1厚层灰岩L1定向钻进D1C1L1D1地面定向钻进厚层灰岩改造模式M1
    井下施工C2厚层灰岩L1定向钻进D1C2L1D1井下定向钻进厚层灰岩改造模式M2
    地面施工C1薄层灰岩L2定向钻进D1C1L2D1地面定向钻进薄层灰岩改造模式M3
    井下施工C2薄层灰岩L2定向钻进D1C2L2D1井下定向钻进薄层灰岩改造模式M4
    地面施工C1厚层灰岩L1径向射流D2C1L1D2地面径向射流厚层灰岩改造模式M5
    下载: 导出CSV 
    | 显示表格

    3) 亚类模式

    定向钻进过程中利用侧向分支孔可形成4种钻孔布设形态,包括扫帚状(S1)、鱼骨状(S2)、梳状(S3)、叉状(S4);径向射流在治理层位利用射流工艺可形成梅花状(S5)布孔形态。另外,根据钻孔探查情况采用不同注浆材料,常见超前区域注浆材料包括碎石骨料(G1)、河沙骨料(G2)、粉煤灰(G3)、水泥(G4)。根据超前区域探查改造模式结合施工设计中钻孔形态、注浆材料分类,可综合确定治理模式亚类(表2)。

    表  2  超前区域治理注浆改造亚类模式[21]
    Table  2.  Subgroup mode of grouting transformation in advanced regional control[21]
    治理模式(M)钻孔形态(S)注浆材料(G)亚类分类
    C1L1D1地面厚层灰岩定向钻孔改造模式扫帚状(S1)
    鱼骨状(S2)
    梳状(S3)
    叉状(S4)
    碎石骨料(G1)
    河沙骨料(G2)
    水泥−粉煤灰(G3)
    纯水泥(G4)
    C1L1D1-(S1/S2/S3/S4)(G1/G2/G3)
    C1L1D1-(S1/S2/S3/S4)(G1/G2/G4)
    C1L1D1-(S1/S2/S3/S4)(G2/G3)
    C1L1D1-(S1/S2/S3/S4)(G2/G4)
    C1L1D1-(S1/S2/S3/S4)(G3)
    C1L1D1-(S1/S2/S3/S4)(G4)
    C2L1D1井下厚层灰岩定向钻孔改造模式扫帚状(S1)
    鱼骨状(S2)
    梳状(S3)
    叉状(S4)
    水泥−粉煤灰(G3)
    纯水泥(G4)
    C2L1D1-(S1/S2/S3/S4)(G3)
    C2L1D1-(S1/S2/S3/S4)(G4)
    C1L2D1地面薄层灰岩定向钻孔改造模式扫帚状(S1)
    梳状(S3)
    叉状(S4)
    碎石骨料(G1)
    河沙骨料(G2)
    水泥−粉煤灰(G3)
    纯水泥(G4)
    C1L2D1-(S1/S3/S4)(G1/G2/G3)
    C1L2D1-(S1/S3/S4)(G1/G2/G4)
    C1L2D1-(S1/S3/S4)(G2/G3)
    C1L2D1-(S1/S3/S4)(G2/G4)
    C1L2D1-(S1/S3/S4)(G3)
    C1L2D1-(S1/S3/S4)(G4)
    C2L2D1井下薄层灰岩定向钻孔改造模式扫帚状(S1)
    鱼骨状(S2)
    梳状(S3)
    叉状(S4)
    水泥−粉煤灰(G3)
    纯水泥(G4)
    C2L2D1-(S1/S2/S3/S4)(G3)
    C2L2D1-(S1/S2/S3/S4)(G4)
    C1L1D2地面厚层灰岩径向射流改造模式梅花状(S5)水泥−粉煤灰(G3)
    纯水泥(G4)
    C1L1D2-S5(G3)
    C1L1D2-S5(G3)
    下载: 导出CSV 
    | 显示表格

    根据前文内容,可得到各判识指标选择标准:(1)地面有施工条件优先考虑地面施工;(2)煤层埋深大于800 m时地面施工钻探成本高,优先考虑井下施工;(3)煤层底板所承受水压大于6 MPa时,井下孔口装置难以保障施工安全,必须选用地面施工;(4)煤层埋深小于240 m时,地面定向钻孔施工难以实现造斜,优先考虑地面径向射流;(5)煤层底板有薄层灰岩地层结构,优先考虑改造薄层灰岩;(6)薄层、厚层灰岩顶部改造后需满足突水系数的要求。依据该选择准则体系,建立煤层底板灰岩含水层超前区域探查改造模式选择流程(图2)。

    图  2  超前区域治理模式选择流程
    Figure  2.  Mode selection process of advanced regional control

    煤层底板超前注浆加固定向钻孔钻进时需要综合采用螺旋钻杆回转钻进、稳定组合钻具定向钻进和螺杆钻具随钻测量定向钻进等多种耦合工艺[23]。定向钻孔施工时按钻孔结构及施工工艺的不同可分为套管段施工、目的层位与套管之间层段施工、定向造斜段施工和透孔钻进施工等。钻进时,首先采用螺旋钻杆回转钻进工艺进行套管段施工,成功下入套管并试压合格;然后采用稳定组合钻具定向钻进工艺钻至目的层位,使钻孔倾角略为增加,以减少后期定向钻进倾角调整难度;再使用螺杆钻具随钻测量定向钻进完成定向造斜段和稳斜段施工,使钻孔按设计轨迹在目的岩层中延伸直至达到设计要求。

    套管部位钻孔施工采用回转钻进成孔工艺,为确保套管顺利下入孔内,要求钻孔轨迹平直,孔内沉渣少,为此可采用螺旋钻进工艺配套稳定组合钻具和取心钻进工艺技术进行套管段施工。

    如果目的层位与套管之间岩层坚硬且较稳定,为缩短造斜段的距离,确保钻孔轨迹平滑可在回转钻进阶段利用稳定器组合钻具实施钻孔造斜;如果目的层位与套管之间岩层不稳定,钻进过程中需尽量缩短此段的钻孔长度,为此需对钻孔进行保直钻进。

    井下硬岩层定向钻进过程中,造斜率是轨迹控制过程中衡量底部导向钻具组合造斜能力的重要指标,也是实施导向钻进工艺的重要依据。井下定向钻进普遍采用单弯螺杆马达,其配套的导向钻具长度较短、刚性较大、变形较小,可采用几何法计算煤矿井下导向钻具造斜率。

    井下硬岩定向钻进轨迹控制宜采用复合定向钻进工艺。在钻进过程中钻杆柱“有滑有转”,以回转稳斜钻进为主、滑动造斜钻进为辅,典型轨迹控制方法如图3所示,当实钻轨迹与设计轨迹之间偏差达到一定值后,调整孔底螺杆马达造斜工具的指向(即工具面)、滑动给进,连续造斜改变钻孔前进方向,获得理想钻孔姿态参数后回转稳斜钻进,在水平面和垂直剖面内控制实钻轨迹围绕设计轨迹延伸。

    图  3  复合定向钻进轨迹控制原理
    Figure  3.  Composite directional drilling trajectory control principle

    煤层底板隐伏导水通道是发生底板突水事故的主要因素之一,也是超前区域治理过程中的主要治理对象。综合采用钻进过程中岩屑录井、钻时录井、钻液漏失量、压水试验、随钻伽马、注浆参数等判识指标,能够验证地面物探疑似通道并在区域上探查隐伏导水通道发育情况,形成钻进过程中隐伏导水通道判识的主要指标、变化规律、通道类型等,科学判识通道导水性,为超前区域治理提供基础依据。

    基于淮北、淮南、黄河北、邢台等华北型煤田矿区各矿井揭露的隐伏导水构造情况的分析和总结,得到矿井隐伏导水通道特征为:类型多样,且呈现隐伏断层、陷落柱及裂隙等构造类型组合出水事故特征;褶曲轴部裂隙相对发育,含水层富水性强,隔水层相对薄弱;多发育于煤层底板,发育层位低,位置不明,充填较松散、胶结差,导水性较好;隐蔽性好,可探测性差等。

    华北型煤田开采主要受断层、陷落柱和岩溶裂隙构造的充水影响,根据岩溶含水层特征及钻探过程中所能探查的构造精度、种类和性质,可得到隐伏导水通道分类,即岩溶裂隙,包括封闭溶隙、弱连通溶隙、强连通溶隙;断层,包括隔水断层、弱导水断层、导水断层;陷落柱,包括全充水强导水型、边缘充水导水型、不导水(微弱导水)陷落柱。

    隐伏导水通道的存在是造成煤层底板突水事故的主要因素之一,是超前区域治理的主要对象。对我国多个矿区超前区域治理钻探、注浆成果进行统计,总结出岩屑录井、钻时录井、冲洗液消耗量、压水试验、注浆参数和随钻伽马6个隐伏导水通道的判识指标。其中,岩屑录井和钻时录井用于判识构造通道发育情况,冲洗液消耗量、压水试验和注浆参数用于判识通道的导水性,随钻伽马作为孔内地球物理探查方法,对所判识的隐伏导水通道进行验证和预判。

    分析隐伏导水通道判识指标得到,定向钻进过程中,岩屑录井共有3种曲线类型,即岩屑渐变型(岩屑-Ⅰ型)、岩屑突变无岩爆型(岩屑-Ⅱ型)、岩屑突变有岩爆型(岩屑-Ⅲ型);钻时录井曲线共有3种曲线类型,即钻时渐变型(钻时-Ⅰ型)、钻时突变未放空型(钻时-Ⅱ型)、钻时突变放空型(钻时-Ⅲ型)。根据不同构造形态特征得到灰岩含水层中判识指标的多元组合(表3)。

    表  3  多元信息通道判识组合
    Table  3.  Combination of multiple information channel identification
    序号岩屑录井形态钻时录井形态判识构造类型
    1岩屑渐变型(岩屑-Ⅰ型)钻时渐变型(钻时-Ⅰ型)穿层,非构造
    2无变化形态钻时突变未放空型(钻时-Ⅱ型)小型岩溶裂隙(隙宽<10 cm)
    3无变化形态钻时突变放空型(钻时-Ⅲ型)大型岩溶裂隙(隙宽>10 cm)
    4岩屑突变无岩爆型(岩屑-Ⅱ型)钻时突变未放空型(钻时-Ⅱ型)小型断层
    5岩屑突变无岩爆型(岩屑-Ⅱ型)钻时突变放空型(钻时-Ⅲ型)大中型断层
    6岩屑突变有岩爆型(岩屑-Ⅲ型)钻时突变未放空型(钻时-Ⅱ型)胶结良好陷落柱
    7岩屑突变有岩爆型(岩屑-Ⅲ型)钻时突变放空型(钻时-Ⅲ型)胶结较差陷落柱
    下载: 导出CSV 
    | 显示表格

    根据我国现阶段主要治理区钻孔施工揭露情况统计,确定“冲洗液消耗量中钻液漏失量大于30 m3/h,压水试验渗透率大于10 Lu,单位注浆量大于10 t/m”可作为地层通道导水性判识标准。基于多因素建立综合判识标准,对通道的导水性能进行分区,得出不同构造类型的导水性能类型。根据上述3因素进行通道导水性分区,可分为8个小区(图4)。

    图  4  通道导水性判识分类方法
    Figure  4.  Identification and classification method of channel conductivity

    由于煤层底板岩溶裂隙含水层超前区域注浆具有隐蔽性特征,注浆实践中缺少对浆液扩散的有效控制,致使存在施工周期长、注浆量大、注浆效果不可靠等问题。基于超前区域注浆特点,关键注浆参数控制结合受注地层特征、注浆材料、浆液性能、浆液扩散规律[24]、底板注浆改造要求和工艺等因素,系统分析注浆材料及浆液选配和调控、注浆终结标准、钻孔布置间距和方向、注浆控制因素等[25]

    (1) 奥陶系灰岩顶部垂向渗透性存在明显差异,存在渗透性随深度增加而增大的变化趋势;细观空隙的总数量中以闭合裂隙和微张裂隙数量占比为主,两者开度均值分别稳定在120和420 μm,宽张裂隙和中张裂隙在总裂隙面积中占主要比例,具有较好的贯通性和延展性;在奥灰顶部超前区域注浆过程中可采用水泥−粉煤灰浆液或水泥−黏土浆液进行“垫底式”充填注浆,再采用颗粒较细小的水泥浆液对微小裂隙和闭合裂隙进行升压注浆和劈裂注浆[26-28]

    (2) 水泥浆液、水泥−粉煤灰浆液、水泥−黏土浆液的凝结时间主控因素为水玻璃掺量,黏度的主控因素分别为水玻璃掺量、水灰比、水灰比,结石率的主控因素分别为水灰比、水灰比、水玻璃掺量,强度的主控因素为水灰比;根据各因素极差大小进行排序,得到各因素对实验结果的敏感性,由大到小为:裂隙开度>裂隙倾角>水灰比>注浆压力,即裂隙开度对浆液扩散距离影响程度高于裂隙倾角,浆液水灰比高于注浆压力[29-31]

    (3) 关于注浆压力、稳压时间和钻孔间距确定,可通过分析不同条件下水平孔倾斜单裂隙浆液扩散距离特征曲线,得到不同浆液水灰比、受注地层条件和注浆压力下的浆液扩散距离,结合注浆设备额定工作能力约束,得到符合注浆设备工作能力的水平孔间距,同时也得到对应钻孔间距的注浆压力和稳压时间,通过与岩体起裂压力对比可得到合理的注浆终结压力,最后得到对应稳压时间和水平注浆孔间距的注浆终结压力标准,该标准能够满足注浆设备能力和水平注浆孔间距要求,也可有效保证注浆覆盖范围和注浆效果[32]

    (4) 水平分支孔布设方向可根据受注地层地应力方向尽量保持钻孔轨迹与最大主应力方向垂直、与最小主应力方向平行。注浆过程中浆液扩散可根据浆液性能和扩散距离敏感性特征通过调控浆液水灰比、注浆压力和注浆时间达到注浆终结压力和稳压时间标准。

    综合上述控制因素和原则,结合底板超前区域注浆工艺和要求,形成煤层底板水害超前区域治理关键注浆参数控制技术(图5)[33]

    图  5  煤层底板水害超前区域治理关键注浆参数控制技术[25]
    Figure  5.  Key grouting parameter control technology for advanced regional control of water damage in coal seam floor[25]

    注浆效果评价为煤层底板超前区域治理技术的重要组成部分。准确地进行注浆效果评价,不但可以有效保证矿井采掘安全,还可为超前区域治理工程布设提供指导,进一步优化注浆孔布设及注浆工艺。

    灰色关联分析是灰色系统方法之一,已广泛应用于经济学、社会学和环境等各个领域。它的基本思想是根据2个数据序列几何形状的相似性来确定它们之间的关系度。根据几何形状建立了关系分析模型[34],断线之间的几何形状越近,关系度就越大。灰色关联分析可综合注浆量、钻井液漏失量、伽马值、水温、平均渗透率、注浆段长度等多种注浆因素,通过关联、分组、综合评分进行效果检验。具体注浆中分析和整理注浆点的注浆量、钻井液漏失量、伽马值、水温、平均渗透率、注浆段长度、奥灰含水层水压和隔水层厚度等数据,并灰色关联度计算,通过各个参数的灰色关联度确定其评价结果的权重。然后计算得到突水风险评估的综合权重系数、综合分数并完成突水风险评价图。

    注浆效果检查方法有钻探、物探和注浆特征分析法等,主要以定性评价方法为主。而以冲洗液消耗量、钻孔涌水量、渗透率和改造层厚度4个指标为研究对象,可建立超前区域治理技术的注浆效果定量评价分析方法[35]

    根据多个矿区注浆改造施工技术经验,当冲洗液消耗量为均匀消耗时,且消耗量不大于1 L/(min·m),表明注浆效果良好;根据多个矿区注浆改造施工技术经验,当井下检查孔为均匀出水且每钻进100 m段内涌水量小于5 m3/h时,表明注浆效果良好;当每个层段的渗透率均不大于1 Lu时,表明注浆效果良好。在地层结构预测准确的前提下,只要轨迹偏差、注浆结束标准均满足设计要求时,且在该注浆层段内,渗透率、钻孔涌水量、冲洗液消耗量均达到注浆良好标准时,表明改造层厚度达到设计要求。

    电磁波在地下岩层中传播时,由于各种岩石、矿物电性参数(电阻率、介电常数等)不同,对电磁波能量的吸收有一定差异,电阻率较低的岩石、矿物具有较大的吸收作用。另外,伴随着断裂构造或空洞所出现的界面,能够对电磁波产生折射、反射等作用,也会造成电磁波能量的损耗。因此,可研究各种岩层及地质构造对电磁波传播的影响(包括吸收、反射、二次辐射等作用)所造成的各种异常进行地质解释,从而判识地质构造。基于上述原理,为实现注浆效果检验,制造了孔中无线电波透视装备,其工作原理如图6所示。

    图  6  孔中无线电波透视工作原理
    Figure  6.  Working principle of radio wave perspective in a hole

    发射机是孔中电磁波透视仪的建场设备,供出稳定、具有较强功率且符合本安要求的电磁波信号是发射机的主要技术指标。接收机接收的信号范围为纳伏到微伏级,按探测设计要求可选择接收探测频率信号。接收机由模拟板、控制板、电源板和面板组成,接收机采用本安型防爆设计,孔中接收天线采用多级放大设计,使孔中接收信号通过天线放大处理,实现电磁波信号的高性能接收。具体检验钻孔可在工作面巷道底板施工定向钻,采取“一对二”施工方式,具体施工方式如图7所示。

    图  7  钻杆送入过程中孔中电磁波透视施工布置
    Figure  7.  Construction arrangement of electromagnetic wave perspective in hole during drill pipe feeding

    超前区域治理工程中可采用孔间电磁波透视仪对前一注浆序次进行效果检验并补充分支孔进行及时补充注浆。在治理完成后,综合单个钻孔漏失量、注浆量、水温、平均渗透率等指标,采用关联分析、综合评分定性评价整个治理区注浆效果。在孔间物探确定的浆液充填较差区、定性评价的注浆效果较差区施工井下注浆效果检查钻孔,评价注浆效果,并对效果较差区域进行补充注浆,由此形成了注浆效果检验综合评价装备技术体系(图8)。

    图  8  井下注浆效果综合检验
    Figure  8.  Comprehensive inspection of downhole grouting effect

    桑树坪煤矿位于陕西渭南,地表为山峁沟谷地貌,主采二叠系山西组3号煤和石炭系太原组11号煤,其中11号煤距底板奥陶系灰岩含水层近,受奥灰水害威胁极为严重(图9)。地面高程+430~+750 m,平均为+590 m;煤层埋深240~560 m,平均为400 m;奥灰顶界面高程+140~+210 m,平均为+175 m;奥灰含水层水位+380 m;底板与奥灰含水层间距16.5~21.5 m,承受最大水压为1.23 MPa,最大突水系数0.072 MPa/m。3105工作面实测底板破坏深度14.8 m,最小有效隔水层厚度仅有1.7 m。工作面回采面临极为严重的底板奥灰含水层突水威胁。

    图  9  桑树坪煤矿 3105 工作面煤层底板地层结构
    Figure  9.  Schematic diagram of stratum structure of coal seam floor in working face 3105 in Sangshuping Coal Mine

    由于煤层底板无薄层太原组灰岩,因此改造层位选择奥陶系灰岩顶部峰峰组风化充填带。由于3105工作面及周边对应地表为山峁沟谷地貌,沟壑纵横钻机进场施工难度高,且民事协调难度大,赔青费用高。因此,3105工作面区域治理不具备地面施工条件;另外,煤层底板所承受奥灰含水层最大水压为1.23 MPa,小于井下钻孔安全施工6 MPa的要求,确定区域治理钻孔施工采用井下定向钻进方式。综合分析,3105工作面采用C2S1D1井下厚层灰岩定向钻孔改造模式进行煤层底板含水层超前区域治理。

    基于工程成本和浆液性能考虑,注浆过程中主要采用水灰比相对较大的水泥浆液进行注浆,因此,在参数计算过程中采用牛顿型水泥浆液参数。在注浆过程中孔口注浆压力与受注地层裂隙注浆点处的有效压力存在中间流动过程的动力损失,计算公式见下式,因此,通过计算转换可得到有效注浆压力。

    $$ {p_1} = p + {p_{\rm{s}}} - {p_\text{ξ}} $$ (1)

    式中:p1为作用到灌浆段中点上的实际压力;p为孔口处压力表显示的压力;ps为浆液自重产生的压力;pξ为浆液在流经自压力表至灌浆段中点一段路程上的流动损失。

    根据超前区域注浆改造范围将水平分支钻孔间距设置为40 m,基于水平孔倾斜单裂隙牛顿型流体扩散控制方程,计算得到桑树坪煤矿底板奥灰超前区域治理中注浆时间下限,其注浆改造试算参数见表4

    表  4  桑树坪煤矿超前区域注浆改造试算参数
    Table  4.  Trial calculation parameters of grouting transformation in advanced regional control of Sangshuping Coal Mine
    浆液参数孔口注浆压力/MPa有效注浆压力/MPa钻孔半径/m静水压力/MPa
    水灰比黏度/(Pa·s)相对密度/(kg·m−3)
    10.1198142434.300.0482.05
    20.096712484.14
    30.074211604.06
    下载: 导出CSV 
    | 显示表格

    经过计算得到6 000 s内不同水灰比下浆液扩散距离变化曲线(图10)。根据水平分支孔间距40 m,为保证注浆效果,水灰比为1∶1的浆液注浆时间不能低于3 800 s,水灰比为2∶1的浆液注浆时间不能低于3 200 s,水灰比为3∶1的浆液注浆时间不能低于2 600 s。

    图  10  不同水灰比浆液扩散距离随时间变化曲线
    注:LsLx分别为水平孔上方和下方裂隙浆液扩散距离;WS为水灰比。
    Figure  10.  Variation curve of grout diffusion distance with time for different water-cement ratios

    改造层位为进入奥灰层位后23~31 m,平均27 m;孔深660 m;三开裸孔段孔径96 mm。工作面回采前在井下巷道施工钻场,沿工作面走向布设定向钻孔14个,钻孔平面投影间距约40 m,垂直深度位于奥陶系灰岩顶面以下15~20 m,对于揭露的奥灰含水层出水位置采用下行式注浆方式,具体钻孔布设如图11所示。

    图  11  桑树坪煤矿3105工作面超前区域治理钻孔布设
    Figure  11.  Drilling pattern of advanced regional control in working face 3105 in Sangshuping Coal Mine

    工作面回采揭露表明,采用井下超前区域治理模式有效探查并改造了煤层底板含水层的富水位置,保障了工作面安全。

    随着煤矿开采深度增加,煤炭开采面临底板高压岩溶含水层水害威胁愈发严重,为华北型煤田煤层底板超前区域治理工作提出了新的要求:

    (1) 深部煤层底板岩溶含水层突水机理。煤层底板突水机理是指导底板超前区域治理层位和模式选择的依据。以往广泛应用的底板突水系数对于深部煤层底板突水评价适用性较差,目前其他突水机理研究成果尚未有效揭示深部煤层采动过程中底板应力、裂隙和水压等影响因素的耦合致灾机制,而采动过程中应力状态转换、水压损伤、裂隙通道起裂等变化存在相互影响和制约,如何揭示其内在关系是底板突水机理研究发展的重要方向。

    (2) 煤矿底板导水通道超前精准探查。由于煤层底板灰岩岩溶裂隙分布的非均质性特征,利用水平定向钻实现导水通道精准探查是实现超前区域治理中“有的放矢、精准可控注浆”的基础。而导水通道精准探查需采用物探、钻探和化探等手段,综合判识。因此如何利用物探、钻探、化探相结合的技术手段,实现采前、采中分阶段全面精准探查,准确判识潜在导水通道的分布范围、充填结构、导水性能等,实现导水通道的智能化精准判识,将是底板导水通道超前精准探查研究的重要方向。

    (3) 煤层底板超前区域治理。现阶段煤层底板超前区域治理技术相对成熟,但注浆材料、浆液配比、注浆压力、注浆时间、注浆量等关键注浆参数选取的智能化水平仍存在不足,如何实现注浆参数随受注地层空隙性、导水性、渗透性等特征而智能化调控是超前区域治理技术发展的方向。

    a. 基于注浆改造过程中钻孔施工位置、注浆层位选择和钻进方式,建立了5种超前区域注浆改造主模式,确定了各类模式的确定方法和准则。结合注浆材料、钻孔布设形态,形成超前区域注浆改造亚类划分。

    b. 形成了煤层底板超前注浆加固定向钻孔螺旋钻杆回转钻进、稳定组合钻具定向钻进和螺杆钻具随钻测量定向钻进等多种钻进方式耦合的钻进工艺。

    c. 确定了冲洗液消耗量中钻液漏失量大于30 m3/h,压水试验渗透率大于10 Lu,单位注浆量大于10 t/m的地层通道导水性判识标准,得出了不同构造类型的导水性能类型,实现了通道导水性分区。

    d. 分析了注浆材料及浆液选配和调控、注浆终结标准、钻孔布置间距和方向、注浆控制因素等,提出了基于受注地层特征、注浆材料、浆液性能、浆液扩散规律、底板注浆改造要求和工艺等因素的超前注浆浆液扩散控制工艺。

    e. 提出了基于冲洗液消耗量、钻孔涌水量、渗透率和改造层厚度4个指标的超前区域注浆效果定量评价分析方法及基于灰色关联度分析的注浆效果检验定性评价方法,开发了井下水平定向钻孔的孔间电磁波透视仪,形成了底板灰岩超前注浆效果检验综合评价装备技术体系。

  • [1]

    BALARAM V,SANTOSH M,SATYANARAYANAN M,et al. Lithium:A review of applications,occurrence,exploration,extraction,recycling,analysis,and environmental impact[J]. Geoscience Frontiers,2024,15(5):101868.

    [2] 翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,2019,33(2):106-111.

    ZHAI Mingguo,WU Fuyuan,HU Ruizhong,et al. Critical metal mineral resources:Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):106-111.

    [3] 蒋少涌,温汉捷,许成,等. 关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J]. 中国科学基金,2019,33(2):112-118.

    JIANG Shaoyong,WEN Hanjie,XU Cheng,et al. Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):112-118.

    [4] 曹代勇,魏迎春,李新,等. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨[J]. 煤炭学报,2024,49(1):479-494.

    CAO Daiyong,WEI Yingchun,LI Xin,et al. Discussion on the theory and technical system framework of cooperative exploration of coal and strategic metal resources in coal-bearing strata[J]. Journal of China Coal Society,2024,49(1):479-494.

    [5] 魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查技术方法[J]. 煤炭科学技术,2023,51(12):27-41.

    WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27-41.

    [6] 魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查模型[J]. 地质学报,2024,98(8):2517-2530.

    WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration model of coal and strategic metal resources in coal-bearing strata[J]. Acta Geologica Sinica,2024,98(8):2517-2530.

    [7]

    DAI Shifeng,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155-164.

    [8] 代世峰,赵蕾,王宁,等. 煤系中关键金属元素的成矿作用研究进展与展望[J]. 矿物岩石地球化学通报,2024,43(1):49-63.

    DAI Shifeng,ZHAO Lei,WANG Ning,et al. Advance and prospect of researches on the mineralization of critical elements in coal-bearing sequences[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2024,43(1):49-63.

    [9] 林俊伟,刘东娜,张尚清. 华北兴县含铝岩系矿物特征及物源分析[C]//第十届全国成矿理论与找矿方法学术讨论会论文摘要集. 西安,2023.
    [10] 秦勇. 中国煤系矿产近现代地质研究进展与走向[J]. 煤田地质与勘探,2025,53(1):12-35.

    QIN Yong. Advances and trends of modern and contemporary research on the geology of coal-measure minerals in China[J]. Coal Geology & Exploration,2025,53(1):12-35.

    [11] 曹代勇,秦国红,魏迎春,等. 煤系矿产资源赋存的盆地动力学控制:研究现状与展望[J]. 中国煤炭地质,2020,32(9):38-46.

    CAO Daiyong,QIN Guohong,WEI Yingchun,et al. Basin dynamics controlling of coal measures mineral resources hosting:Research status and expectation[J]. Coal Geology of China,2020,32(9):38-46.

    [12] 曹代勇,魏迎春,秦国红,等. 煤系战略性金属元素富集成矿的构造控制[J]. 煤田地质与勘探,2023,51(1):66-85.

    CAO Daiyong,WEI Yingchun,QIN Guohong,et al. Tectonic control on enrichment and metallogenesis of strategic metal elements in coal measures[J]. Coal Geology & Exploration,2023,51(1):66-85.

    [13]

    DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3-21.

    [14] 程晨,宋杨,臧静坤,等. 贵州普安矿区20号煤中锂的赋存状态及逐级化学提取实验研究[J]. 煤田地质与勘探,2022,50(10):44-53.

    CHENG Chen,SONG Yang,ZANG Jingkun,et al. Occurrence modes and stepwise chemical extraction experiment of lithium in No. 20 coal seam in Pu’an mining area,Guizhou Province[J]. Coal Geology & Exploration,2022,50(10):44-53.

    [15]

    TOMASCAK P B,MAGNA T,DOHMEN R. Advances in lithium isotope geochemistry[M]. Switzerland:Springer Cham,2016.

    [16]

    YAMAJI K,MAKITA Y,WATANABE H,et al. Theoretical estimation of lithium isotopic reduced partition function ratio for lithium ions in aqueous solution[J]. The Journal of Physical Chemistry A,2001,105(3):602-613.

    [17]

    HUH Y,CHAN L H,ZHANG Libo,et al. Lithium and its isotopes in major world rivers:Implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta,1998,62(12):2039-2051.

    [18]

    WIMPENNY J,GÍSLASON S R,JAMES R H,et al. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J]. Geochimica et Cosmochimica Acta,2010,74(18):5259-5279.

    [19] 张婧雯,刘海娇,李杨子,等. 煤炭的非传统稳定同位素研究进展[J]. 地球环境学报,2023,14(1):38-48.

    ZHANG Jingwen,LIU Haijiao,LI Yangzi,et al. A review of recent development of non-traditional stable isotope geochemistry in coal[J]. Journal of Earth Environment,2023,14(1):38-48.

    [20] 陈瑜,徐飞,程宏飞,等. 锂同位素地球化学研究新进展[J].地学前缘,2023,30(5):469-490.

    CHEN Yu,XU Fei,CHENG Hongfei,et al. Lithium isotope geochemistry:A review[J]. Earth Science Frontiers,2023,30(5):469-490.

    [21]

    HARKNESS J S,RUHL L S,MILLOT R,et al. Lithium isotope fingerprints in coal and coal combustion residuals from the United States[J]. Procedia Earth and Planetary Science,2015,13:134-137.

    [22]

    TEICHERT Z,BOSE M,WILLIAMS L B. Lithium isotope compositions of U. S. coals and source rocks:Potential tracer of hydrocarbons[J]. Chemical Geology,2020,549:119694.

    [23]

    HE Maoyong,LUO Chongguang,LU Hai,et al. Measurements of lithium isotopic compositions in coal using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2019,34(9):1773-1778.

    [24]

    HE Hongtao,WANG Jinxi,XING Lecai,et al. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu Mine,Inner Mongolia,China:Explanations based on Li isotope values and density functional theory calculations[J]. Journal of Geochemical Exploration,2020,213:106510.

    [25]

    SUN Beilei,GUO Zhanming,LIU Chao,et al. Lithium isotopic composition of two high-lithium coals and their fractions with different lithium occurrence modes,Shanxi Province,China[J]. International Journal of Coal Geology,2023,277:104338.

    [26] 孙蓓蕾,孔艳磊,王国权,等. 高锂无烟煤中不同赋存态锂同位素组成趋同特征及其机理[J]. 煤炭学报,2022,47(5):1773-1781.

    SUN Beilei,KONG Yanlei,WANG Guoquan,et al. Convergence and its mechanism of lithium isotopic composition with different occurrence states in Li-rich anthracite[J]. Journal of China Coal Society,2022,47(5):1773-1781.

    [27]

    MORIGUTI T,SHIBATA T,NAKAMURA E. Lithium,boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in Northeastern Japan:Mineralogical controls on slab-derived fluid composition[J]. Chemical Geology,2004,212(1/2):81-100.

    [28]

    SEITZ H M,WOODLAND A B. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies:An indicator of magmatic and metasomatic processes[J]. Chemical Geology,2000,166(1/2):47-64.

    [29]

    VON STRANDMANN P A E P,FRASER W T,HAMMOND S J,et al. Experimental determination of Li isotope behaviour during basalt weathering[J]. Chemical Geology,2019,517:34-43.

    [30]

    SEITZ H M,BREY G P,LAHAYE Y,et al. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes[J]. Chemical Geology,2004,212(1/2):163-177.

    [31]

    RYAN J G,LANGMUIR C H. The systematics of lithium abundances in young volcanic rocks[J]. Geochimica et Cosmochimica Acta,1987,51(6):1727-1741.

    [32]

    RUDNICK R L,TOMASCAK P B,NJO H B,et al. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J]. Chemical Geology,2004,212(1/2):45-57.

    [33]

    CHAN L H,ALT J C,TEAGLE D A H. Lithium and lithium isotope profiles through the upper oceanic crust:A study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters,2002,201(1):187-201.

    [34]

    YANG Dan,HOU Zengqian,ZHAO Yue,et al. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system[J]. Scientific Reports,2015,5:13812.

    [35]

    XIAO Yan,ZHANG Hongfu,DELOULE E,et al. Large lithium isotopic variations in minerals from peridotite xenoliths from the Eastern North China Craton[J]. The Journal of Geology,2015,123(1):79-94.

    [36]

    SUN He,XIAO Yilin,GAO Yongjun,et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(15):3782-3787.

    [37]

    KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135-148.

    [38] 孙玉壮,赵存良,李彦恒,等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报,2014,39(4):744-748.

    SUN Yuzhuang,ZHAO Cunliang,LI Yanheng,et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society,2014,39(4):744-748.

    [39] 朱尤青,罗朝坤,杨晓飞,等. 黔中地区蔡家坝铝土矿床富锂铝土岩地球化学特征及沉积环境研究[J]. 地质与勘探,2024,60(4):735-746.

    ZHU Youqing,LUO Chaokun,YANG Xiaofei,et al. Geochemical characteristics and sedimentary environment of Li-rich bauxite in the Caijiaba bauxite deposit,central Guizhou Province[J]. Geology and Exploration,2024,60(4):735-746.

    [40] 程宏飞,周轩平. 沉积型锂矿的成矿特征及锂赋存状态研究进展[J]. 金属矿山,2024(5):28-40.

    CHENG Hongfei,ZHOU Xuanping. Research progress on the metallogenic characteristics of sedimentary lithium deposits and the occurrence state of lithium[J]. Metal Mine,2024(5):28-40.

    [41]

    DAI Shifeng,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:A critical evaluation[J]. Earth-Science Reviews,2021,222:103815.

    [42]

    WARD C R. Analysis,origin and significance of mineral matter in coal:An updated review[J]. International Journal of Coal Geology,2016,165:1-27.

    [43]

    DI Shaobo,DAI Shifeng,NECHAEV V P,et al. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao Surface Mine,Shanxi Province,China:Derivation of pyroclastics and sediment-source regions[J]. International Journal of Coal Geology,2023,273:104262.

    [44]

    HAO Huidi,LI Jingzhi,WANG Jinxi,et al. Distribution characteristics and enrichment model of valuable elements in coal:An example from the Nangou Mine,Ningwu Coalfield,Northern China[J]. Ore Geology Reviews,2023,160:105599.

    [45]

    SUN Beilei,LIU Yunxia,TAJCMANOVA L,et al. In-situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district,Ningwu Coalfield,Northern China[J]. Ore Geology Reviews,2022,144:104825.

    [46]

    LIU Bangjun,WANG Junyan,HE Hongtao,et al. Geochemistry of Carboniferous coals from the Laoyaogou Mine,Ningwu Coalfield,Shanxi Province,Northern China:Emphasis on the enrichment of valuable elements[J]. Fuel,2020,279:118414.

    [47]

    HOU Yuehua,LIU Dongna,ZHAO Fenghua,et al. Mineralogical and geochemical characteristics of coal from the southeastern Qinshui Basin:Implications for the enrichment and economic value of Li and REY[J]. International Journal of Coal Geology,2022,264:104136.

    [48]

    WANG Xiaomei,WANG Xiaoming,PAN Zhejun,et al. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin,Northern China,with emphasis on lithium enrichment[J]. International Journal of Coal Geology,2019,214:103254.

    [49]

    XIE Panpan,HOWER J C,NECHAEV V P,et al. Lithium and redox-sensitive (Ge,U,Mo,V) element mineralization in the Pennsylvanian coals from the Huangtupo Coalfield,Shanxi,Northern China:With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater[J]. Fuel,2021,300:120948.

    [50]

    ZHAO Lei,DAI Shifeng,NECHAEV V P,et al. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield,southeastern Qinshui Basin,Northern China[J]. Ore Geology Reviews,2019,115:103184.

    [51]

    LI Jintao,LIU Linsong,KANG Xingjian,et al. Enrichment of lithium in the claystone coal gangue from the Malan Mine,Xishan Coalfield,Shanxi Province,Northern China[J]. Geochemistry,2023,83(2):125972.

    [52]

    SUN Yuzhuang,YANG Jingjing,ZHAO Cunliang. Minimum mining grade of associated Li deposits in coal seams[J]. Energy Exploration & Exploitation,2012,30(2):167-170.

    [53]

    DAI Shifeng,LI Dan,CHOU Chenlin,et al. Mineralogy and geochemistry of boehmite-rich coals:New insights from the Haerwusu surface mine,Jungar Coalfield,Inner Mongolia,China[J]. International Journal of Coal Geology,2008,74(3/4):185-202.

    [54]

    QIN Guohong,WEI Jinhao,WEI Yingchun,et al. The differences in the Li enrichment mechanism between the No. 6 Li-rich coals and parting in Haerwusu Mine,Ordos Basin:Evidenced using in situ Li microscale characteristics and Li isotopes[J]. Minerals,2024,14(8):836.

    [55]

    DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2006,66(4):253-270.

    [56]

    JIU Bo,HUANG Wenhui,SPIRO B,et al. Distribution of Li,Ga,Nb,and REEs in coal as determined by LA-ICP-MS imaging:A case study from Jungar Coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2023,267:104184.

    [57]

    ZHANG Shuai,YUAN Tangchen,SUN Bo,et al. Formation of boehmite through desilication of volcanic-ash-altered kaolinite and its retention for gallium:Contribution to enrichment of aluminum and gallium in coal[J]. International Journal of Coal Geology,2024,281:104404.

    [58]

    YANG Ning,TANG Shuheng,ZHANG Songhang,et al. In seam variation of element-oxides and trace elements in coal from the eastern Ordos Basin,China[J]. International Journal of Coal Geology,2018,197:31-41.

    [59] 魏迎春,华芳辉,何文博,等. 峰峰矿区2号煤中微量元素富集特征差异性研究[J]. 煤炭学报,2020,45(4):1473-1487.

    WEI Yingchun,HUA Fanghui,HE Wenbo,et al. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area[J]. Journal of China Coal Society,2020,45(4):1473-1487.

    [60]

    WEI Yingchun,HE Wenbo,QIN Guohong,et al. Lithium enrichment in the No. 21 coal of the Hebi No. 6 Mine,Anhe Coalfield,Henan Province,China[J]. Minerals,2020,10(6):521.

    [61] 秦国红. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型[D]. 北京:中国矿业大学(北京),2020.

    QIN Guohong. Enrichment characteristics and genetic types of trace elements in the Late Paleozoic Coal from Ordos Basin[D]. Beijing:China University of Mining & Technology(Beijing),2020.

    [62]

    QIN Guohong,CAO Daiyong,WEI Yingchun,et al. Geochemical characteristics of the Permian coals in the Junger-Hebaopian mining district,northeastern Ordos Basin,China:Key role of paleopeat-forming environments in Ga-Li-REY enrichment[J]. Journal of Geochemical Exploration,2020,213:106494.

    [63]

    WANG Zhen,DAI Shifeng,ZOU Jianhua,et al. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan,Southwest China:Concentration,characterization and optimized extraction[J]. International Journal of Coal Geology,2019,203:1-14.

    [64]

    DAI Shifeng,XIE Panpan,JIA Shaohui,et al. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield,Chongqing,China:Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews,2017,80:1-17.

    [65]

    ZHOU Mingxuan,ZHAO Lei,WANG Xibo,et al. Mineralogy and geochemistry of the Late Triassic coal from the Caotang Mine,northeastern Sichuan Basin,China,with emphasis on the enrichment of the critical element lithium[J]. Ore Geology Reviews,2021,139:104582.

    [66]

    LI Weiwei,TANG Yuegang. Sulfur isotopic composition of superhigh-organic-sulfur coals from the Chenxi Coalfield,Southern China[J]. International Journal of Coal Geology,2014,127:3-13.

    [67]

    DAI Shifeng,ZHANG Weiguo,WARD C R,et al. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield,Guangxi Province,Southern China:Influences of terrigenous materials and hydrothermal fluids[J]. International Journal of Coal Geology,2013,105:60-84.

    [68] 唐修义,黄文辉. 中国煤中微量元素[M]. 北京:商务印书馆,2004.
    [69] 任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.
    [70] 曹代勇,魏迎春. 鄂尔多斯盆地煤系矿产赋存规律与资源评价[M]. 北京:科学出版社,2019.
    [71]

    LI Xin,WEI Yingchun,CAO Daiyong,et al. Cooperative exploration model of coal-lithium deposit:A case study of the Haerwusu coal-lithium deposit in the Jungar Coalfield,Inner Mongolia,Northern China[J]. Minerals,2024,14(2):179.

    [72] 王金喜. 宁武盆地石炭二叠系煤中锂富集的沉积控制[D]. 徐州:中国矿业大学,2019. WANG Jinxi. Sedimentary control of lithium enrichment in Permo-Carboniferous coals from Ningwu Basin,Shanxi,China[D]. Xuzhou:China University of Mining and Technology,2019.
    [73] 苟龙飞,金章东,贺茂勇. 锂同位素示踪大陆风化:进展与挑战[J]. 地球环境学报,2017,8(2):89-102.

    GOU Longfei,JIN Zhangdong,HE Maoyong. Using lithium isotopes traces continental weathering:Progresses and challenges[J]. Journal of Earth Environment,2017,8(2):89-102.

    [74] 左贵彬. 河南禹州煤田石炭-二叠纪煤中锂的富集机理[D]. 邯郸:河北工程大学,2021. ZUO Guibin. Mechanism of lithium enrichment in Carboniferous-Permian coals in Yuzhou Coalfield,Henan Province[D]. Handan:Hebei University of Engineering,2021.
    [75]

    TENG Fangzhen,LI Wangye,RUDNICK R L,et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters,2010,300(1/2):63-71.

    [76]

    WUNDER B,MEIXNER A,ROMER R L,et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology,2006,151(1):112-120.

    [77]

    LI Wenshuai,LIU Xiaoming,CHADWICK O A. Lithium isotope behavior in Hawaiian regoliths:Soil-atmosphere-biosphere exchanges[J]. Geochimica et Cosmochimica Acta,2020,285:175-192.

    [78]

    LI Su,NIE Junsheng,REN Xueping,et al. Increased primary mineral dissolution control on a terrestrial silicate lithium isotope record during the middle Miocene Climate Optimum[J]. Geochimica et Cosmochimica Acta,2023,348:41-53.

    [79] 李献华,刘宇,汤艳杰,等. 离子探针Li同位素微区原位分析技术与应用[J]. 地学前缘,2015,22(5):160-170.

    LI Xianhua,LIU Yu,TANG Yanjie,et al. In situ Li isotopic microanalysis using SIMS and its applications[J]. Earth Science Frontiers,2015,22(5):160-170.

    [80] 徐飞,秦身钧,李神勇,等. 煤及煤灰中锂的地球化学及其提取研究进展[J]. 煤炭科学技术,2021,49(9):220-229.

    XU Fei,QIN Shenjun,LI Shenyong,et al. Research progress on geochemistry and extraction of lithium from coal and coal ash[J]. Coal Science and Technology,2021,49(9):220-229.

    [81]

    ZHANG Shuai,XIU Wei,SUN Bo,et al. Provenance of multi-stage volcanic ash recorded in the Late Carboniferous coal in the Jungar Coalfield,North China,and their contribution to the enrichment of critical metals in the coal[J]. International Journal of Coal Geology,2023,273:104265.

    [82]

    JIU Bo,JIN Zhijun,WANG Zhaoguo. Multiscale in-situ elemental characterization of critical elements in low rank coal,implications for modes of occurrence[J]. Fuel,2023,349:128632.

    [83] 方丹,夏阳超,李永改,等. 煤系战略性金属锂镓的富集分离研究进展[J]. 金属矿山,2024,(1):233-243.

    FANG Dan,XIA Yangchao,LI Yonggai,et al. Research Progress on Enrichment and Separation of Strategic Metal Lithium and Gallium from Coal-related Resources[J]. Metal Mine,2024,(1):233-243.

    [84] 赵泽森,高建明,郭彦霞,等. 不同活化条件下粉煤灰中锂的酸碱溶出特性[J]. 环境科学研究,2018,31(3):569-576.

    ZHAO Zesen,GAO Jianming,GUO Yanxia,et al. Acid-alkali dissolution characteristics of lithium in fly ash under different activation conditions[J]. Research of Environmental Sciences,2018,31(3):569-576.

    [85]

    MONDAL S,GHAR A,SATPATI A K,et al. Recovery of rare earth elements from coal fly ash using TEHDGA impregnated resin[J]. Hydrometallurgy,2019,185:93-101.

    [86] 代红,李彦恒,侯晓琪,等. 粉煤灰碳酸钠烧结工艺中影响锂浸出率因素的研究[J]. 有色金属(冶炼部分),2015(4):17-19.

    DAI Hong,LI Yanheng,HOU Xiaoqi,et al. Study of factors effecting lithium leaching rate from coal ash in sodium carbonate sintering process[J]. Nonferrous Metals(Extractive Metallurgy),2015(4):17-19.

    [87]

    BRAOS-GARCı́A P,MAIRELES-TORRES P,RODRı́GUEZ-CASTELLÓN E,et al. Gas-phase hydrogenation of acetonitrile over nickel supported on alumina- and mixed alumina/gallium oxide-pillared tin phosphate catalysts[J]. Journal of Molecular Catalysis A:Chemical,2001,168(1/2):279-287.

    [88] 隋丽丽,翟玉春,孙莹莹. 粉煤灰硫酸氢铵焙烧法提取氧化铝的研究[J]. 有色金属(冶炼部分),2017(4):20-24.

    SUI Lili,ZHAI Yuchun,SUN Yingying. Study on extraction of Al2O3 from fly ash by ammonium bisulfate roasting[J]. Nonferrous Metals(Extractive Metallurgy),2017(4):20-24.

    [89] 杨敬杰,孙红娟,彭同江,等. 硫酸/硫酸铵混合助剂焙烧粉煤灰提取Al2O3[J]. 硅酸盐学报,2016,44(10):1538-1542.

    YANG Jingjie,SUN Hongjuan,PENG Tongjiang,et al. Alumina extraction from coal fly ash with ammonium sulfate and sulfuric acid[J]. Journal of the Chinese Ceramic Society,2016,44(10):1538-1542.

    [90] 侯晓琪,李彦恒,代红,等. 从粉煤灰中浸出锂的工艺研究[J].河北工程大学学报(自然科学版),2015,32(1):58-61.

    HOU Xiaoqi,LI Yanheng,DAI Hong,et al. Leaching of lithium from fly ash using carbonate[J]. Journal of Hebei University of Engineering(Natural Science Edition),2015,32(1):58-61.

    [91] 侯永茹,李彦恒,代红,等. 用吸附法从粉煤灰碱性溶液里提取锂[J]. 粉煤灰综合利用,2015,29(3):10-11.

    HOU Yongru,LI Yanheng,DAI Hong,et al. Experimental study on litohium extraction from fly ash alkaline solution by absorption method[J]. Fly Ash Comprehensive Utilization,2015,29(3):10-11.

    [92] 单雪媛. 粉煤灰中有价元素分布规律及浸出行为研究[D]. 太原:山西大学,2019. SHAN Xueyuan. Study on distribution and extraction characteristics of valuable elements in fly ash[D]. Taiyuan:Shanxi University,2019.
    [93] 朱士飞,毛礼鑫,曹泊,等. 基于正交实验对煤灰中锂提取率多因素分析[J]. 煤炭技术,2023,42(7):221-225.

    ZHU Shifei,MAO Lixin,CAO Bo,et al. Multi-factor analysis of lithium extraction rate from coal ash based on orthogonal experiment[J]. Coal Technology,2023,42(7):221-225.

    [94]

    RUDNIK E. Coal and coal by-products as unconventional lithium sources:A review of occurrence modes and hydrometallurgical strategies for metal recovery[J]. Minerals,2024,14(8):849.

    [95] 苏慧,朱兆武,王丽娜,等. 矿石资源中锂的提取与回收研究进展[J]. 化工学报,2019,70(1):10-23.

    SU Hui,ZHU Zhaowu,WANG Lina,et al. Research progress in extraction and recovery of lithium from hard-rock ores[J]. CIESC Journal,2019,70(1):10-23.

    [96] 程芳琴,王波,成怀刚. 粉煤灰提取高附加值有价元素的技术现状及进展[J]. 无机盐工业,2017,49(2):1-4.

    CHENG Fangqin,WANG Bo,CHENG Huaigang. Research progress of extracting high added value elements from fly ash[J]. Inorganic Chemicals Industry,2017,49(2):1-4.

    [97] 苏慧,朱兆武,王丽娜,等. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报,2019,33(7):2119-2126.

    SU Hui,ZHU Zhaowu,WANG Lina,et al. Advances and prospects of extracting and recovering lithium from salt lake brines[J]. Materials Reports,2019,33(7):2119-2126.

    [98] 张文杰,童雄,谢贤,等. 稀土分离纯化技术研究现状[J]. 中国稀土学报,2022,40(1):24-37.

    ZHANG Wenjie,TONG Xiong,XIE Xian,et al. A review on research of rare earths separation and purification technology[J]. Journal of the Chinese Society of Rare Earths,2022,40(1):24-37.

    [99] 周晴,贺茂勇,孔凡翠,等. 锂同位素高精度测定进展、应用与发展趋势[J]. 盐湖研究,2025,33(1):1-17.

    ZHOU Qing,HE Maoyong,KONG Fancui,et al. Advancements,applications and development trends in high-precision lithium isotope analysis[J]. Journal of Salt Lake Research,2025,33(1):1-17.

    [100] 汤艳杰,张宏福,英基丰. 锂同位素分馏机制讨论[J]. 地球科学,2009,34(1):43-55.

    TANG Yanjie,ZHANG Hongfu,YING Jifeng. Discussion on fractionation mechanism of lithium isotopes[J]. Earth Science,2009,34(1):43-55.

    [101]

    BHUSHAN K S,GOSWAMI P G,RAO R M. Precise determination of 6Li/7Li isotopic ratio with NaLiBO2+ ion using total evaporation and ion integration by Thermal Ionization Mass Spectrometry (TIMS)[J]. International Journal of Mass Spectrometry,2021,469:116683.

    [102]

    MISRA S,FROELICH P N. Measurement of lithium isotope ratios by quadrupole-ICP-MS:Application to seawater and natural carbonates[J]. Journal of Analytical Atomic Spectrometry,2009,24(11):1524-1533.

    [103]

    MAGNA T,JANOUŠEK V,KOHÚT M,et al. Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites[J]. Chemical Geology,2010,274(1/2):94-107.

    [104] 蔺洁,刘勇胜,胡兆初,等. MC-ICP-MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报,2016,35(3):458-464.

    LIN Jie,LIU Yongsheng,HU Zhaochu,et al. Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(3):458-464.

    [105]

    XU Rong,LIU Yongsheng,TONG Xirun,et al. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian,North China Craton:Insights into Pacific slab subduction-related mantle modification[J]. Chemical Geology,2013,354:107-123.

    [106]

    BECK P,CHAUSSIDON M,BARRAT J A,et al. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks:The case of pyroxene phenocrysts from nakhlite meteorites[J]. Geochimica et Cosmochimica Acta,2006,70(18):4813-4825.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-21
  • 修回日期:  2025-03-21

目录

/

返回文章
返回