Fracture propagation law and main controlling factors of fracturing in deep coal measure gas mining
-
摘要: 【目的】 煤系气合采是提高我国非常规天然气单井产量的重要开发方式。然而,煤系气储层物质组成截然不同、物理性质差异巨大,导致煤系气合采储层在压裂过程中裂缝在不同储层内的扩展方式和发育程度存在不确定性。如何协调好多储层改造实现多气共采对于降低煤系气开发成本、提高产能至关重要。【方法】 以鄂尔多斯盆地东北缘临兴区块为例,剖析影响煤系气储层合层压裂效果的地质因素、工程因素,利用数值模拟方法,研究不同储层内压裂裂缝的扩展规律,并对合层压裂提出针对性建议。【结果】 结果表明,储隔层最小水平地应力差值、抗拉强度差值、泵注排量和黏度的增大有利于缝高和缝宽的扩展,其值越高,裂缝的穿层能力越强。岩层的最小水平地应力和压裂液黏度主要影响储层中裂缝宽度,具体表现为,岩层相对最小水平地应力越大或压裂液的黏度越小,裂缝宽度越小。储隔层弹性模量差值和泊松比差值的变化对整体压裂效果的影响较小,但弹性模量差值增大会减少裂缝穿层时间,使裂缝更快到达极限高度。【结论】 基于上述研究,提出了临兴地区煤系气合采储层优选方案及排采建议,即应优先选取储隔层最小水平地应力差在0~4MPa、抗拉强度差值大于4.5 MPa 的储层进行合采压裂,并以6~9 m3/min 的泵注排量进行开采,从而能实现更高效的资源开发。Abstract: Coal-measure gas co-production represents a pivotal approach to enhancing unconventional natural gas production in China. However, the material composition and physical characteristics of coal-measure gas reservoirs vary significantly, introducing uncertainty in the fracture propagation mode and degree of fracture development in different reservoirs during the fracturing process of coal-measure gas reservoirs. Effective coordination of multiple reservoir transformations for achieving multiple gas co-recovery is crucial for minimizing development costs and maximizing production capacity. This study focuses on the Linxing block, located on the northeastern margin of the Ordos Basin. It analyzes the geological and engineering factors influencing the fracturing effectiveness of Coal-measure gas reservoirs. Utilizing numerical simulation technology, the study simulates the propagation patterns of fractures in various reservoirs and proposes recommendations for multi-reservoir hydraulic fracturing in the Linxing block. The results show that the increase of the minimum horizontal in-situ stress difference, tensile strength difference, pumping displacement, and viscosity of the reservoir and barrier is conducive to the expansion of fracture height and width, and the higher the value, the greater the penetration capacity of the fracture. Specifically, the minimum horizontal in-situ stress and fracturing fluid viscosity of the rock layer primarily influence fracture width, where a larger relative minimum horizontal in-situ stress or lower fracturing fluid viscosity results in narrower fractures. Additionally, variations in the difference between the elastic modulus and Poisson's ratio of the reservoir have minimal impact on the overall fracturing effect, although an increase in the elastic modulus difference reduces the time required for fractures to penetrate through the bed, enabling faster attainment of ultimate height fracture. Based on these insights, the study proposes an optimal scheme and drainage recommendations for coal-measure gas co-production reservoirs in the Linxing area. Specifically, reservoirs with a minimum horizontal in-situ stress difference of 0~4 MPa and a tensile strength difference exceeding 4.5 MPa should be prioritized for co-production fracturing, utilizing larger pumping displacements to achieve more efficient resource development.
-
-
[1] 郑民,李建忠,吴晓智,等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J].天然气地球科学,2018,29(10):1383–1397. ZHENG Min,LI Jianzhong,WU Xiaozhi,et al.China’s conventional and unconventional natural gas resource potential,key exploration fields and direction[J].Natural Gas Geoscience,2018,29(10):1383–1397.
[2] 米立军,朱光辉.鄂尔多斯盆地东北缘临兴—神府致密气田成藏地质特征及勘探突破[J].中国石油勘探,2021,26(3):53–67.MI Lijun,ZHU Guanghui.Geological characteristics and exploration breakthrough in Linxing-Shenfu tight gas field,northeastern Ordos Basin[J].China Petroleum Exploration,2021,26(3):53–67. [3] 陈刚,胡宗全.鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨[J].煤炭学报,2018,43(6):1572–1579. CHEN Gang,HU Zongquan.Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at Southeastern Ordos Basin[J].Journal of China Coal Society,2018,43(6):1572–1579.
[4] 聂志宏,巢海燕,刘莹,等.鄂尔多斯盆地东缘深部煤层气生产特征及开发对策:以大宁—吉县区块为例[J].煤炭学报,2018,43(6):1738–1746.NIE Zhihong,CHAO Haiyan,LIU Ying,et al.Development strategy and production characteristics of deep coalbed methane in the East Ordos Basin:Taking Daning-Jixian Block for example[J].Journal of China Coal Society,2018,43(6):1738–1746. [5] 李国璋.煤系气合采产层贡献及其预测模型:以鄂尔多斯盆地临兴—神府地区为例[D].徐州:中国矿业大学,2020.LI Guozhang.Contribution and Its Prediction model of Production Strata for Joint CMG Mining: A Case from Linxing-Shenfu Area in Ordos Basin, China[D].Xuzhou:China University of Mining and Technology,2020. [6] HUANG Bingxiang,LIU Jiangwei.Experimental investigation of the effect of bedding planes on hydraulic fracturing under true triaxial stress[J].Rock Mechanics and Rock Engineering,2017,50(10):2627–2643.
[7] TAN Peng,JIN Yan,YUAN Liang,et al.Understanding hydraulic fracture propagation behavior in tight sandstone–coal interbedded formations:An experimental investigation[J].Petroleum Science,2019,16(1):148–160.
[8] HOU Bing,CHEN Mian,LI Zhimeng,et al.Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J].Petroleum Exploration and Development,2014,41(6):833–838.
[9] 杨帆,梅文博,李亮,等.薄互层致密砂岩水力压裂裂缝扩展特征研究[J].煤田地质与勘探,2023,51(7):61–71. YANG Fan,MEI Wenbo,LI Liang,et al.Propagation of hydraulic fractures in thin interbedded tight sandstones[J].Coal Geology & Exploration,2023,51(7):61–71.
[10] HUANG Bingxiang,LIU Jiangwei.Fully three-dimensional propagation model of horizontal borehole hydraulic fractures in strata under the effect of bedding planes[J].Energy Exploration & Exploitation,2018,36(5):1189–1209.
[11] TAN Peng,JIN Yan,HAN Ke,et al.Vertical propagation behavior of hydraulic fractures in coal measure strata based on true triaxial experiment[J].Journal of Petroleum Science and Engineering,2017,158:398–407.
[12] SMITH M B,BALE A B,BRITT L K,et al.Layered modulus effects on fracture propagation,proppant placement,and fracture modeling[C]//SPE Annual Technical Conference and Exhibition.New Orleans,Louisiana.SPE,2001: SPE-71654-MS.
[13] 曹代勇,聂敬,王安民,等.鄂尔多斯盆地东缘临兴地区煤系气富集的构造-热作用控制[J].煤炭学报,2018,43(6):1526–1532.CAO Daiyong,NIE Jing,WANG Anmin,et al.Structural and thermal control of enrichment conditions of coal measure gases in Linxing block of eastern Ordos Basin[J].Journal of China Coal Society,2018,43(6):1526–1532. [14] 张晓丽,何金先,董守华,等.临兴地区太原组下段煤系泥页岩中战略性金属元素镓富集特征及成因分析[J].沉积学报,2022,40(6):1676–1690.ZHANG Xiaoli,HE Jinxian,DONG Shouhua,et al.Enrichment characteristics and genetic analysis of the strategic metal element gallium in coal-measure shale,lower Taiyuan formation,linxing area[J].Acta Sedimentologica Sinica,2022,40(6):1676–1690. [15] 秦勇,申建,沈玉林,等.鄂尔多斯盆地东北缘中深层煤层气勘探潜力评价与开发可行性研究项目技术总结报告[R].徐州:中国矿业大学,2016. [16] 范立勇,周国晓,杨兆彪,等.鄂尔多斯盆地深部煤层气差异富集的地质控制[J/OL].煤炭科学技术,2024.https://kns.cnki.net/kcms/detail/11.2402.TD.20240911.2005.001.html.FAN Liyong,ZHOU Guoxiao,YANG Zhaobiao,et al.Geological Control of Differential Enrichment of Deep Coalbed Methane in the Ordos Basin[J/OL].Coal Science and Technology,2024 (2024-09-12).https://kns.cnki.net/kcms/detail/11.2402.TD.20240911.2005.001.html. [17] 张春良.河东煤田中部本溪组-山西组含气系统及沉积控制[D].徐州:中国矿业大学,2017.ZHANG Chunliang.The gas-bearing system and sedimentary control from Benxi to Shanxi Formation in middle part of Hedong Coalfield[D].Xuzhou:China University of Mining and Technology,2017. [18] 凌兴杰,陈琦,黄志强.考虑天然裂缝的页岩储集层多裂缝竞争扩展三维模拟[J/OL].特种油气藏,2024 (2024-08-16).https://kns.cnki.net/kcms/detail/21.1357.TE.20240815.1545.010.html. LING Xingjie,CHEN Qi,HUANG Zhiqiang.Three-dimensional simulation of multi-fracture competition propagation in shale reservoir considering natural fractures[J/OL].Special Oil & Gas Reservoirs,2024 (2024-08-16).https://kns.cnki.net/kcms/detail/21.1357.TE.20240815.1545.010.html.
[19] YANG Lei,CHEN Baixi.Extended finite element-based cohesive zone method for modeling simultaneous hydraulic fracture height growth in layered reservoirs[J].Journal of Rock Mechanics and Geotechnical Engineering,2024,16(8):2960–2981.
[20] 孙泽飞.临兴区块煤系非常规天然气共采可行性地质评价[D].徐州:中国矿业大学,2016.SUN Zefei.Geological evaluation for co-mining feasibility of unconventional natural gases in coal series from Linxing Block[D].Xuzhou:China University of Mining and Technology,2016. [21] 景东阳,李治平,韩瑞刚.致密储层水力压裂裂缝几何形态地质影响因素及控制方法[J].科学技术与工程,2022,22(21):9129–9136. JING Dongyang,LI Zhiping,HAN Ruigang.Geological influencing factors and control methods of hydraulic fracturing fracture geometry in tight reservoir[J].Science Technology and Engineering,2022,22(21):9129–9136.
[22] 陈凯,段永伟,于雪盟,等.松南盆地情字外前缘砂页交互储层可压性评价[J].油气井测试,2024,33(4):66–72.CHEN Kai,DUAN Yongwei,YU Xuemeng,et al.Fracturability evaluation on sand-shale interbedded reservoir at forefront of Qingzi margin in Songnan basin[J].Well Testing,2024,33(4):66–72. [23] 熊健,吴俊,刘向君,等.陆相页岩储层地质力学特性及对压裂效果的影响[J].西南石油大学学报(自然科学版),2023,45(5):69–80. XIONG Jian,WU Jun,LIU Xiangjun,et al.The geomechanical characteristics of the continental shale reservoirs and their influence on the fracturing effect[J].Journal of Southwest Petroleum University (Science & Technology Edition),2023,45(5):69–80.
[24] 田晓冬,魏博,梁忠奎,等.南堡凹陷4号构造中深层储层可压性综合评价[J].长江大学学报(自然科学版),2023,20(4):33–42.TIAN Xiaodong,WEI Bo,LIANG Zhongkui,et al.Comprehensive evaluation of compressibility of mid-deep reservoirs in No.4 structure of Nanpu Sag[J].Journal of Yangtze University (Natural Science Edition),2023,20(4):33–42. [25] 吕照,潘丽燕,郝丽华,等.砂泥岩互层水力压裂裂缝穿层扩展影响因素数值模拟[J].新疆石油地质,2023,44(6):729–738. LYU Zhao,PAN Liyan,HAO Lihua,et al.Numerical simulation of factors influencing hydraulic fracture propagation in SandstoneMudstone interbedded reservoirs[J].Xinjiang Petroleum Geology,2023,44(6):729–738.
[26] 肖红林,黎凯,侯甫,等.JH区块沙溪庙组致密砂岩气藏压裂缝高影响规律研究[J].科技和产业,2023,23(23):196–207. XIAO Honglin,LI Kai,HOU Fu,et al.Study on the influencing law of fracturing fracture height in tight sandstone gas reservoir of shaximiao formation in JH block[J].Science Technology and Industry,2023,23(23):196–207.
[27] 程正华.基于多裂缝扩展形态的水平井压裂施工参数优化[D].大庆:东北石油大学,2022.CHENG Zhenghua.Optimization of fracturing parameters forhorizontal wells based on multi-fracturepropagation law[D].Daqing:Northeast Petroleum University,2022. [28] 李勇,陈涛,马啸天,等.煤层顶板间接压裂裂缝扩展机制及影响因素[J].煤炭科学技术,2024,52(2):171–182. LI Yong,CHEN Tao,MA Xiaotian,et al.Extension mechanism and influencing factors of indirect fracturing fractures on coal seam roof[J].Coal Science and Technology,2024,52(2):171–182.
[29] 许建红,崔啸龙,姜恩元.致密砂岩储层水平井水力压裂裂缝参数影响因素数值模拟[J].大庆石油地质与开发,2023,42(5):154–159. XU Jianhong,CUI Xiaolong,JIANG Enyuan.Numerical simulation of influencing factors of hydraulic fracture parameters of horizontal wells in tight sandstone reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2023,42(5):154–159.
[30] 赵文伟.深层海相页岩压裂裂缝扩展行为研究[D].荆州:长江大学,2023.ZHAO Wenwei.Study on Hydraulic Fracture Propagation Behavior of Deep Marine shale[D].Jingzhou:Yangtze University,2023. [31] 鲁家成.基于ABAQUS软件的水力压裂缝扩展研究[J].山西冶金,2024,47(5):105–106. LU Jiacheng.Research on hydraulic pressure crack propagation based on ABAQUS software[J].Shanxi Metallurgy,2024,47(5):105–106.
[32] 雷浩然.低渗透储层水平井分段多簇压裂裂缝扩展研究[D].西安:西安石油大学,2021.LEI Haoran.Resarch on fracture propagation of horizontal well with segmented multiplecluster fracturing in low permeability reservoir[D].Xi’an:Xi’an Shiyou University,2021. [33] 王挺,汪杰,江厚顺,等.页岩水平井水力压裂裂缝扩展及防窜三维地质模拟[J].新疆石油地质,2023,44(6):720–728.WANG Ting,WANG Jie,JIANG Houshun,et al.3D geological simulation of hydraulic fracture propagation and frac-hit prevention in horizontal shale gas wells[J].Xinjiang Petroleum Geology,2023,44(6):720–728. [34] 李忠诚,陈栗,徐小红,等.基于多裂缝扩展形态的水平井压裂施工参数优化[J].能源与环保,2024,46(2):1–9. LI Zhongcheng,CHEN Li,XU Xiaohong,et al.Optimization of fracturing operation parameters of horizontal wells based on multi fracture propagation patterns[J].China Energy and Environmental Protection,2024,46(2):1–9.
[35] 胡凯.考虑动态滤失系数的水力压裂施工参数优化[D].郑州:郑州大学,2021.HU Kai.Optimization of hydraulic fracturing operation parameters considering dynamic filtration coefficient[D].Zhengzhou:Zhengzhou University,2021. [36] 田克寒.基于扩展有限元法的水力压裂施工参数优化[D].东营:中国石油大学(华东),2018. TIAN Kehan.The Optimization of hydraulic fracturing construction parameter based on XFEM[D].Dongying:China University of Petroleum (Huadong),2018.
[37] 孙四清,李文博.井下碎软煤层顶板加砂分段压裂瓦斯高效抽采技术[J].工矿自动化,2022,48(12):101–107.SUN Siqing,LI Wenbo.High-efficiency gas extraction technology of staged fracturing roof with sand of underground broken and soft coal seam[J].Journal of Mine Automation,2022,48(12):101–107. [38] 周文高,王素兵,杨焕强.考虑页岩弱层理的水力裂缝扩展路径三维数值模拟[J].钻采工艺,2021,44(3):15–19.ZHOU Wengao,WANG Subing,YANG Huanqiang.Three-dimensional numerical simulation of hydraulic fracture propagation path considering weak shale bedding[J].Drilling & Production Technology,2021,44(3):15–19. [39] 陈玲.多方法控制压裂裂缝高度的技术及实践[J].中国石油和化工标准与质量,2018,38(15):157–158.CHEN Ling.Technology and practice of multi-method control of fracture height[J].China Petroleum and Chemical Standard and Quality,2018,38(15):157–158. [40] 胡永全,谢朝阳,赵金洲,等.海拉尔盆地人工隔层控缝高压裂技术研究[J].西南石油大学学报(自然科学版),2009,31(1):70–72. HU Yongquan,XIE Chaoyang,ZHAO Jinzhou,et al.Fracture height control by artificial barrier in Hailaer basin[J].Journal of Southwest Petroleum University (Science & Technology Edition),2009,31(1):70–72.
[41] 贾海正.控缝高压裂技术研究及应用[J].新疆石油天然气,2018,14(4):71–74. JIA Haizheng.The research and application of fracture height control techniques[J].Xinjiang Oil & Gas,2018,14(4):71–74.
[42] 刘晶.海拉尔盆地控制裂缝高度压裂技术研究[D].大庆:大庆石油学院,2010.LIU Jing.Study on fracturing techniques of controlling fractures height in Hailar Basi[D].Daqing:Daqing Petroleum Institute,2010. [43] 吕振虎,外力·阿不力米提,邬国栋,等.化学胶塞在控制压裂裂缝高度中的探索与应用[J].钻采工艺,2022,45(5):144–149. LYU Zhenhu,WAILI Albumitti,WU Guodong,et al.Exploration and application of chemical rubber plug in artificial crack height control technology[J].Drilling & Production Technology,2022,45(5):144–149.
[44] 董卓.岩石水力裂缝起裂与扩展特性的理论及数值模拟研究[D].大连:大连理工大学,2020.DONG Zhuo.Theoretical and numerical simulation of the rock hydraulic fracture initiation and propagation behavior[D].Dalian:Dalian University of Technology,2020.
计量
- 文章访问数: 21
- HTML全文浏览量: 1
- PDF下载量: 10