Deep beam theory-based mechanical analysis of water-resisting key strata of coal seam floors in a deep mining environment
-
摘要: 【目的】 随着矿井开采深度增加,来自高承压岩溶水威胁增大,导致煤层工作面出现涌水、塌陷等水害现象,深部开采环境下煤层底板隔水关键层抵抗水压力强度问题是解决这一现象的重要技术之一。【方法】 为解决此问题,将隔水底板简化为岩梁模型,并运用深梁理论解决深部开采突水预测中的岩梁模型问题,采用理论分析和数值模拟相结合的方法,根据深梁弯曲力学特点,结合前人研究成果,将深梁条分成浅梁,通过弹性力学单根浅梁受力分布形式假定层间挤压应力σy为三次函数,给出深梁弯曲应力求解的条分技术,并将计算结果与弹性力学解、FLAC3D模拟结果进行对比。【结果与结论】 研究结果表明,深梁条分解得到的应力及位移与数值解结果趋势更为接近,计算结果更为精确,误差均在10%以内,同时随着条分层数增加精度也在增加,但提高幅度逐渐降低,因此工程应用中针对深部岩梁模型条分到一定程度即可;随着高跨比不断增加,精度误差也在增加,说明条分层宽度不宜过大,否则造成误差增加;底板隔水关键层实例表明,当隔水关键层高跨比大于0.2时,为典型的深梁问题,常规弹性力学的最大拉应力求解结果误差较大,误差达到40.6%,给正确判定关键层突水危险性带来不利影响,此时采用深梁条分法求解应力精度较高,可为深部煤层底板突水预测研究起到重要的指导作用。Abstract: [Objective] An increase in the mining depth of mines poses a more serious threat from highly confined karst water, resulting in water hazards like water inrushes and collapse on the mining faces of coal seams. The key technique used to address this issue is to determine the water pressure resistance of the water-resisting key stratum of the coal seam floor in a deep mining environment. [Methods] This study simplified a water-resisting key stratum into a rock beam model and then dealt with this model using the deep beam theory in the prediction of water inrushes in deep mining. Specifically, by combining theoretical analysis with numerical simulation, this study sliced the deep beam into shallow beams based on the bending mechanical characteristics of the deep beam and previous research results. Then, according to the elastic force distribution of various shallow beams, it was assumed that the interlayer compressive stress σy was a cubic function and presented a slicing technique to determine the bending stress of the deep beam. Finally, the calculated results were compared with the elastic mechanic solutions and the FLAC3D simulation results. [Results and Conclusions] The results indicate that the stress and displacement obtained through the slicing of the deep beam were closer to the numerical simulation results, yielding more accurate calculation results with errors less than 10%. As the number of shallow beams increased, more accurate calculation results were obtained. However, the increased amplitude of the accuracy gradually decreased, necessitating appropriate slicing of the deep rock beam model in engineering applications. Furthermore, errors increased with the height/span length (h/l) ratio. Therefore, appropriate slicing widths are required, otherwise errors will increase. An example of a water-resisting key stratum of a coal seam floor demonstrates that a h/l ratio exceeding 0.2 suggests a typical deep beam. In this case, the maximum tensile stress calculated using conventional elastic mechanics exhibited an error reaching up to 40.6%, exerting a negative impact on properly determining the risks of water inrushes in the water-resisting key stratum. In contrast, the deep-beam slicing method manifested higher accuracy in solving stress, thus serving as a significant guide for the prediction of water inrushes from deep coal seam floors.
-
Keywords:
- deep mining /
- floor aquiclude /
- rock beam model /
- deep beam /
- numerical simulation /
- water inrush prediction
-
随着石油钻井技术的发展,自动化、智能化成为其未来的发展趋势,但目前较低的井下信息上传速率难以满足自动化、智能化钻井的需要[1-2]。因此,井下信息高速传输技术成为关键。在井下信息高速传输技术中,钻井液压力波信息传输技术具有鲁棒性强、成本低等优点,具有广阔的应用前景[3]。由于钻井工况的复杂性,钻井液压力波在传输过程中存在较大的衰减,阻碍了其传输速率的提升[4]。因此,研究钻井液压力波的衰减特性对提升其传输速率具有重要意义。
早期关于钻井液压力波衰减的研究以采用现场数据拟合经验公式为主,其特点是公式较为简洁,但由于缺乏理论支持,适应范围有限,难以进行推广[5]。后续相关研究主要从时域及频域开展,时域方面的研究主要是基于流体动量方程,构建井筒中压力与时间的关系,结合边界条件及初始条件求解各时刻井筒中不同位置的压力,通过将压力波发生器阀前压力值与上游其他位置的压力值对比,研究钻井液压力波的衰减特性[3-4,6-12],特点是适用于描述不同频率的钻井液压力波的衰减,不足之处在于难以直观获得钻井液压力波衰减量与信号参数及钻井参数的关系。频域方面的研究主要是基于水击理论,采用传输线方法,推导压力波沿井筒的衰减模型,以获取衰减系数[13-16]。但后续研究表明,水击理论可较好地描述低频压力波(<1 Hz)的传输,但对于高频钻井液压力波传输描述的精度较差[17]。
由文献调研可以看出,目前对于低频压力波衰减的研究较为透彻,但相关理论难以直接应用于高频压力波。而目前采用的钻井液压力波频率通常位于高频段,开展高频压力波衰减特性的研究具有重要意义。
针对高频钻井液压力波衰减问题,为了探明其衰减规律,基于二维轴对称瞬态流动理论,构建高频压力波衰减模型,以描述衰减与信号参数及钻井参数的关系,并采用地面实验验证该模型。随后利用该模型分析钻井液压力波频率、压力波传输距离、钻井液密度及黏度、钻柱内径对衰减的影响,以期为开发高频钻井液压力波信息传输技术提供理论基础。
1 数学模型
1.1 信息传输系统
钻井液压力波信息传输系统如图1所示。该系统主要包含钻井泵、空气包、压力传感器、压力波发生器及钻头。钻井泵通常采用三缸往复泵,其排量可视为恒定值。空气包为包含压缩空气的容器,可用于吸收钻井泵产生的高频压力波动以提升钻井泵的性能。压力传感器安装在井口处,用于检测上传的钻井液压力波。压力波发生器通过周期性地改变阀口面积,堵塞钻井液的流通路径从而产生压力波。
当钻井液压力波信息传输系统工作时,钻井泵排量逐步增加至指定排量,待排量稳定后,压力波发生器工作产生压力波,携带井下信息传输至井口,井口压力传感器检测压力波后将其传输至信号处理单元进行处理并解释,最终还原出井下信息。在传输过程中,钻井液压力波存在较大的衰减,本文重点探究高频压力波沿井筒的衰减机理,及衰减量与信号参数和钻井参数的关系。
为便于描述,对后续章节做如下约定:(1)坐标系为极坐标,原点位于井口钻柱中心,沿钻柱轴线向下为x正向,沿钻柱半径向外为r方向。(2)压力波传输距离定义为压力波发生器与井口压力传感器间的距离。(3)假设同一钻柱截面钻井液压力值相等。
1.2 衰减模型
井筒中高频钻井液压力波衰减[18]可表示为:
$$ p(x) = {p_0}{{\rm{exp}}{ (- \alpha x)}} $$ (1) 式中:
$p(x)$ 为立管压力;$x$ 为钻井液压力波发生器与传感器间的距离;${{\rm{exp}}{ (- \alpha x)}}$ 为衰减系数,定义为传感器处立管压力与压力波发生器产生的压力波幅值之比;${p_0}$ 为压力波发生器处产生的压力。研究高频钻井液压力波衰减的关键在于确定衰减系数。基于二维轴对称瞬态流动理论,钻柱内流体运动方程[17]可写为:
$$ {\rho _0}\frac{{\partial v}}{{\partial t}} + \frac{{\partial p}}{{\partial x}} - \frac{\eta }{r}\frac{\partial }{{\partial r}}\left( {r\frac{{\partial v}}{{\partial r}}} \right) = 0 $$ (2) 式中:
$p$ 为瞬态立管压力;$t$ 为时间;${\rho _0}$ 为钻井液密度;$v$ 为钻柱内钻井液瞬态流速;$\eta $ 为钻井液的动力黏度;$r$ 为钻柱径向某点至钻柱中心的距离。因压力波动与钻井液流速波动均由压力波发生器工作引起,故二者具有相同的波动频率。令:
$$ p = {p_{\rm{m}}}(x){{\rm{exp}}{({{{\rm{j}}}}\omega t)}} $$ (3) $$ v = {v_{\rm{m}}}(r,x){{\rm{exp}}{({\rm{j}}\omega t)}} $$ (4) 式中:
${p_{\rm{m}}}$ 为压力波动的幅值;$\omega $ 为压力波角频率;${v_{\rm{m}}}$ 为钻井液流速的幅值;${\rm{j}}$ 为虚数单位,且${{\rm{j}}^2} = - 1$ 。将式(3)、式(4)代入式(2)得:
$$ \left( {\frac{{{\partial ^2}}}{{\partial {r^2}}} + \frac{1}{r}\frac{\partial }{{\partial r}} + {K^2}} \right){v_{\rm{m}}} = \frac{1}{\eta }\frac{{\partial {p_{\rm{m}}}}}{{\partial x}} $$ (5) 其中,
${K^2} = {\rm{j}}\dfrac{{{\rho _0}\omega }}{\eta }$ 。式(5)的特解为:
$$ {v_{\rm{m}}} = \frac{1}{{\eta {K^2}}}\frac{{\partial {p_{\rm{m}}}}}{{\partial x}} $$ (6) 此时式(5)变为标准零阶贝塞尔方程,可得其通解为:
$$ {v_{\rm{m}}} = A{J_0}(Kr) + B{N_0}(Kr) + \frac{1}{{\eta {K^2}}}\frac{{\partial {p_{\rm{m}}}}}{{\partial x}} $$ (7) 式中:A、B均为待确定系数;
${J_0}$ 为零阶贝塞尔函数;${N_0}$ 为诺伊曼函数。由流体动力学理论可知,当r= 0时,钻井液流速为有限值,此时诺伊曼函数发散,所以B= 0。当
$r = \dfrac{d}{2}$ 时,钻井液流速为0,即${v_{\rm{m}}} = 0$ ,由此可以得出:$$ A = - \frac{1}{{{J_0}(Kd/2)}}\frac{1}{{\eta {K^2}}}\frac{{\partial {p_{\rm{m}}}}}{{\partial x}} $$ (8) 式中:
$d$ 为钻柱内径。将系数
$A$ 和$B$ 代入式(7)可得:$$ {v_{\rm{m}}} = \frac{1}{{\eta {K^2}}}\frac{{\partial {p_{\rm{m}}}}}{{\partial x}}\left[ {1 - \frac{{{J_0}(Kr)}}{{{J_0}(Kd/2)}}} \right] $$ (9) 钻柱某一截面钻井液平均流速可写为:
$$ {{\bar v_{\rm{m}}}} = \frac{4}{{{\text{π}}{d^2}}}\int_0^{\tfrac{d}{2}} {2{\text{π}}r{v_{\rm{m}}}{\rm{d}}r = } \frac{1}{{\eta {K^2}}}\frac{{\partial {p_{\rm{m}}}}}{{\partial x}}\left[ {1 - \frac{{4{J_1}\left(K\dfrac{d}{2}\right)}}{{Kd{J_0}\left(K\dfrac{d}{2}\right)}}} \right] $$ (10) 式中:J1为一阶贝塞尔函数。
假设钻柱内径满足
$d > 20\sqrt {\dfrac{\eta }{{{\rho _0}\omega }}}$ ,由贝塞尔函数大宗量近似可以得出$\dfrac{{{J_1}\left(K\dfrac{d}{2}\right)}}{{{J_0}\left(K\dfrac{d}{2}\right)}} \approx - {\rm{j}}$ ,此时式(10)可写为:$$\begin{aligned} & - \frac{{\partial {p_{\rm{m}}}}}{{\partial x}} \approx - \eta {K^2}\left( {1 - {\rm{j}}\frac{4}{{Kd}}} \right) {{\bar v_{\rm{m}}}} = \\ &\qquad \left[ {{\rm{j}}{\rho _0}\omega + \frac{{2\sqrt {2\eta {\rho _0}\omega } }}{d}(1 + {\rm{j}})} \right] {{\bar v_{\rm{m}}}} \end{aligned} $$ (11) 记
$\rho = {\rho _0}\left( {1 + \dfrac{2}{d}\sqrt {\dfrac{{2\eta }}{{{\rho _0}\omega }}} } \right)$ ,$R = \dfrac{2}{d}\sqrt {2\eta {\rho _0}\omega }$ ,式(11)可写为:$$ - \frac{{\partial {p_{\rm{m}}}}}{{\partial x}} = ({\rm{j}}\rho \omega + R) {{\bar v_{\rm{m}}}} $$ (12) 将式(3)和式(4)代入式(12)可得:
$$ - \frac{{\partial p}}{{\partial x}} = \rho \frac{{\partial \bar v }}{{\partial t}} + R\bar v $$ (13) 式中:
$\bar v $ 为钻井液流速的平均值。当存在压力波动,钻井液物态方程和连续性方程仍成立,钻井液物态方程和连续性方程可写为:
$$ p = {c^2}\rho $$ (14) $$ \rho \frac{{\partial \bar v }}{{\partial x}} = - \frac{{\partial \rho }}{{\partial t}} $$ (15) 式中:
$c$ 为压力波波速。联立式(13)—式(15)可得:
$$ \rho c\frac{{{\partial ^2}\bar v }}{{\partial {x^2}}} = \rho \frac{{{\partial ^2}\bar v }}{{\partial {t^2}}} + R\frac{{\partial \bar v }}{{\partial t}} $$ (16) 将式(4)代入式(16)可得:
$$ \frac{{{\partial ^2}\bar v }}{{\partial {x^2}}} = \left( { - \frac{{{\omega ^2}}}{{{c^2}}} + {\rm{j}}\frac{{\omega R}}{{\rho {c^2}}}} \right) {{\bar v_{\rm{m}}}} $$ (17) 设
${{\bar v_{\rm{m}}}} = {{\bar v_0}} {{\rm{exp}}{({\rm{j}}k'x)}}$ ,此处$k' = k - {\rm{j}}\alpha$ ,代入式(17)可得:$$ \frac{{{\omega ^2}}}{{{c^2}}} - {\rm{j}}\frac{{\omega R}}{{\rho {c^2}}} = - {\alpha ^2} - 2{\rm{j}}\alpha k + {k^2} $$ (18) 式中:
${{\bar v_0}}$ 为井口处钻井液平均流速幅值;k为钻柱内钻井液压力波的波数;α为钻柱黏滞吸收系数。由于
$\alpha \ll k$ ,化简上式并求解可得:$$ k = \frac{\omega }{c} $$ (19) $$ \alpha = \frac{{\omega R}}{{2\rho {c^2}k}} = \frac{1}{{dc}}\sqrt {\frac{{2\eta \omega }}{\rho }} \approx \frac{1}{{dc}}\sqrt {\frac{{2\eta \omega }}{{{\rho _0}}}} $$ (20) 由此可以得出,当钻井液压力波频率满足
$f > \dfrac{{400\eta }}{{2\pi {\rho _0}{d^2}}}$ 时,钻井液压力波衰减可表述为:$$ p(x) = {{\rm{exp}}\left({ - \frac{x}{{dc}}\sqrt {\frac{{2\eta \omega }}{{{\rho _0}}}} }\right)}{p_0} $$ (21) 例如,当钻柱内径为108.62 mm,钻井液密度为1 340 kg/m3,钻井液黏度为0.060 3 Pa·s时,频率高于0.24 Hz的钻井液压力波的衰减均满足式(21)。
2 模型实验验证
本节采用地面实验验证模型的正确性,地面实验装置如图2所示。实验时泥浆泵安装在压力波发生器上游,其类型为三缸往复泵,可产生几乎恒定的排量。压力波发生器固定在钻柱内,钻柱内径为112 mm。在压力波发生器的下游安装有可调节流量阀,用于模拟钻头的影响。在泥浆泵出口、压力波发生器入口端及出口端分别安装有压力传感器,用于采集不同位置处的钻井液压力波。泥浆泵端压力传感器与入口端压力传感器距离为1 000 m。实验时泥浆泵排量设定为28 L/s,待泥浆泵工作40 s后启动压力波发生器,压力波发生器可产生频率为5 Hz的钻井液压力波,压力传感器分别采集井口及压力波发生器处的压力。实验中采用的钻井液密度为1 340 kg/m3,黏度为0.060 3 Pa·s。
井口处与压力波发生器上游压力传感器采集的压力波波形经滤波处理后如图3所示。由图可以看出,压力波发生器入口处压力最大值为10.40 MPa,该波形最小值为3.66 MPa,压力波幅值为3.37 MPa。井口处压力最大值为8.60 MPa,该波形最小值为3.83 MPa,压力波幅值为2.38 MPa,衰减系数为0.706。将实验参数代入式(20)可得理论衰减系数为0.684。与实验结果相比,误差为3.12%。
不同频率下理论衰减系数与实验对比结果如图4所示。由图可以看出,随着频率的增加,理论衰减系数与实验结果误差不断减小。当频率为5 Hz时,理论衰减系数与实验结果的误差为3.12%,当频率为40 Hz时,误差仅为1.43%。由此可以说明,该模型可较好地描述高频钻井液压力波的衰减。
3 分析与讨论
本节基于高频钻井液压力波衰减模型分析信号参数及钻井参数对压力波衰减的影响。为简化分析,下述仿真时均假设井下钻井液压力波为固定频率的正弦波,且幅值为1 MPa。井筒几何参数与钻井液参数均取自文献[17]中的现场数据。
首先分析钻井液压力波衰减与压力波频率的关系。分析时信号参数及钻井参数见表1。钻井液压力波衰减随频率变化规律如图5所示。 由图可以看出,随着频率的增加,井口钻井液压力波幅值逐渐减小,且变化趋势近似为指数。在1~5 Hz频率段内,井口钻井液压力波幅值变化剧烈,随着频率的增加,井口钻井液压力波幅值变化量逐渐减小,当频率高于8 Hz后,井口钻井液压力波幅值变化缓慢且逐渐减小,变化率最大值为0.1262 MPa/Hz。由于频率的升高会导致钻井液压力波衰减量增大,为保证井口处钻井液压力波质量,可采用低频钻井液压力波传输井下数据。
表 1 井口钻井液压力波幅值随频率变化仿真参数Table 1. Simulation parameters for variation of drilling fluid pressure wave amplitude at wellhead with different frequencies密度ρ/
(kg·m−3)动力黏度
η/(Pa·s)压力波频率
f/Hz钻柱内径
d/mm传输距离
x/m1 340 0.060 3 1~40 112 4 430 随后分析钻井液压力波衰减与压力波传输距离的关系。仿真条件见表2,结果如图6所示。由图可以看出,随着传输距离的增加,井口钻井液压力波幅值逐渐减小,变化趋势近似为指数,但变化速率较频率变化时显著减小。随着传输距离的增加,井口钻井液压力波幅值变化速率逐渐减小,当传输距离为1 000 m时,井口钻井液压力波幅值变化率为2.6×10−4 MPa/m,当传输距离为7000 m时,井口钻井液压力波幅值变化率为2.6×10−5 MPa/m,井口钻井液压力波幅值随传输距离的变化率最大为3.802 3×10−4 MPa/m。
表 2 井口钻井液压力波幅值随传输距离变化仿真参数Table 2. Simulation parameters of drilling fluid pressure wave amplitude at wellhead with transmission distance密度
ρ/(kg·m−3)动力黏度
η/(Pa·s)压力波频率
f/Hz钻柱内径
d/mm传输距离
x/m1 340 0.060 3 5 112 0~10 000 产生上述现象的原因是随着传输距离的增加,连续波信号传输距离增加,由于钻柱壁面摩擦及流体分子间摩擦消耗的能量增加,使得井口位置接收到的压力波信号的幅值显著减小。结合图5可以看出,随着井深的增加,可通过适当减小钻井液压力波频率减小其衰减,从而保证井口处接收到的信号质量。
钻井液压力波衰减随钻井液密度变化如图7所示,仿真参数见表3,钻井液密度变化范围为1 000~2 000 kg/m3[19]。由图可以看出,在高密度钻井液中井口接收到的钻井液压力波幅值较低密度钻井液环境中的大。当钻井液密度为1 000 kg/m3时,井口接收到的钻井液压力波幅值为0.142 MPa,当钻井液密度为2 000 kg/m3时,井口接收到的钻井液压力波幅值为0.252 MPa,这是由于随着钻井液密度的增大,压力波传输过程中质点间摩擦减小,钻井液压力波能量损失降低,使得井口位置处信号幅值增大。同时,随着钻井液密度的增加,井口接收到的钻井液压力波幅值随钻井液密度的变化率逐渐减小,当钻井液密度由1 000 kg/m3变化至1 010 kg/m3时,井口接收到的钻井液压力波幅值增加0.001 38 MPa,当钻井液密度由1 990 kg/m3变化至2 000 kg/m3时,井口接收到的钻井液压力波幅值增加0.000 87 MPa,钻井液压力波幅值随钻井液密度的变化率最大为1.386 7 ×10−4 MPa/(kg·m−3),由此可以说增加钻井液密度可在一定程度上增强井口信号强度,但增强的程度随钻井液密度增加逐渐减小。
表 3 井口钻井液压力波幅值随密度变化仿真参数Table 3. Simulation parameters for variation of drilling fluid pressure wave amplitude at wellhead with drilling fluid density密度ρ/
(kg·m−3)动力黏度η/(Pa·s) 压力波频率f/Hz 钻柱内径d/mm 传输距离x/m 1 000~2 000 0.060 3 5 112 4 430 钻井液压力波衰减随钻井液黏度变化如图8所示,仿真条件见表4,仿真时钻井液动力黏度变化范围为0.02~0.06 Pa·s[20]。由图可以看出,在高黏度钻井液中井口接收到的钻井液压力波强度小于在低黏度钻井液中的井口接收到的钻井液压力波强度,当钻井液黏度为0.02 Pa·s时,井口钻井液压力波幅值为0.379 MPa,当钻井液黏度增至0.06 Pa·s时,井口钻井液压力波幅值为0.186 MPa。衰减量随黏度的最大变化率为0.009 MPa/(Pa·s)。产生上述现象的原因是随着钻井液黏度的增加,压力波传播时因钻柱壁面及流体质点间摩擦造成的能量损失增大,使得井口接收到的压力波幅值显著减小。因此,在现场应用时,为减小信号的衰减应尽量采用低黏度钻井液。
表 4 井口钻井液压力波幅值随黏度变化仿真参数Table 4. Simulation parameters for variation of drilling fluid pressure wave amplitude at wellhead with drilling fluid viscosity密度
ρ/(kg·m−3)动力黏度
η/(Pa·s)压力波频率
f/Hz钻柱内径
d/mm传输距离
x/m1 340 0.02~0.06 5 112 4 430 井口钻井液压力波幅值随钻柱内径变化如图9所示,仿真参数见表5。仿真时采用的钻柱尺寸参照API标准。由图可以看出,随着钻柱内径的增大,井口钻井液压力波幅值逐渐增大。当钻柱内径为0.046 1 m时,井口钻井液压力波幅值为0.16 MPa,当钻柱内径为0.149 9 m时,井口钻井液压力波幅值为0.57 MPa,由此可以说明,内径较大的钻柱更有利于钻井液压力波的传输。
表 5 井口钻井液压力波幅值随钻柱内径变化仿真参数Table 5. Simulation parameters for variation of drilling fluid pressure wave amplitude at welhead with inner diameter of drill string密度ρ/(kg·m−3) 动力黏度η/(Pa·s) 压力波频率f/Hz 钻柱内径d/mm 传输距离x/m 1 340 0.060 3 5 46.1,70.2,100.5,112.0,121.4,149.9 4 430 4 结 论
a. 针对高频钻井液压力波衰减问题,基于二维轴对称瞬态流动理论,构建了衰减模型,得出了衰减规律及适用条件。
b. 该模型可准确描述高频钻井液压力波衰减特性。在钻井液压力波频率为5 Hz,钻柱内径为112 mm,钻井液密度为1 340 kg/m3,黏度为0.060 3 Pa·s,压力波传输距离为1 000 m的条件下,理论与实验结果的偏差为3.12%。
c. 高频钻井液压力波幅值衰减量随频率、传输距离及钻井液黏度的增加近似呈指数增大,随钻井液密度及钻柱内径增加逐渐减小,且幅值衰减受频率影响最大。通过统计仿真结果,高频钻井液压力波幅值衰减量随频率的变化率最大为0.126 2 MPa/Hz,随压力波传输距离的变化率最大为3.802 3×10−4 MPa/m,随钻井液黏度的变化率最大为0.009 MPa/(Pa·s),随钻井液密度的变化率最大为1.386 7×10−4 MPa/(kg·m−3)。本文研究成果可为下一步研究钻井液压力波频率优选提供理论支撑。
-
[1] 袁亮.我国煤炭主体能源安全高质量发展的理论技术思考[J].中国科学院院刊,2023,38(1):11-22. YUAN Liang. Theory and technology considerations on high-quality development of coal main energy security in China[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):11-22.
[2] 孙文洁,李文杰,宁殿艳,等.我国煤矿水害事故现状、预测及防治建议[J].煤田地质与勘探,2023,51(12):185-194. SUN Wenjie,LI Wenjie,NING Dianyan,et al. Current states,prediction and prevention suggestions for water hazard accidents in China's coal mines[J]. Coal Geology&Exploration,2023,51(12):185-194.
[3] 何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813. HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
[4] 谢和平."深部岩体力学与开采理论"研究构想与预期成果展望[J].工程科学与技术,2017,49(2):1-16. XIE Heping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences,2017,49(2):1-16.
[5] 李强.煤层底板隔水关键层失稳及突水危险性研究[D].青岛:山东科技大学,2019. LI Qiang. Study on coal seam floor water resisting key strata instability and water inrush risk[D]. Qingdao:Shandong University of Science and Technology,2019.
[6] 郑士田,马荷雯,姬亚东.煤层底板水害区域超前治理技术优化及其应用[J].煤田地质与勘探,2021,49(5):167-173. ZHENG Shitian,MA Hewen,JI Yadong. Optimization of regional advanced coal floor water hazard prevention and control technology and its application[J]. Coal Geology&Exploration,2021,49(5):167-173.
[7] 王素玲,娄富林.深部煤层开采数值模拟与底板突水预测[J].煤炭技术,2020,39(5):122-125. WANG Suling,LOU Fulin. Numerical simulation of deep coal seam mining and prediction of water inrush from floor[J]. Coal Technology,2020,39(5):122-125.
[8] 尹尚先,王屹,尹慧超,等.深部底板奥灰薄灰突水机理及全时空防治技术[J].煤炭学报,2020,45(5):1855-1864. YIN Shangxian,WANG Yi,YIN Huichao,et al. Mechanism and full-time-space prevention and control technology of water inrush from Ordovician and thin limestone in deep mines[J]. Journal of China Coal Society,2020,45(5):1855-1864.
[9] 范胜洋.采动底板突水孕灾演化规律研究[D].徐州:中国矿业大学,2020. FAN Shengyang. Study on the evolution law of water inrush from mining floor[D]. Xuzhou:China University of Mining and Technology,2020.
[10] 钱鸣高,缪协兴,许家林,等岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000:199-218. [11] 孙建,王连国,鲁海峰.基于隔水关键层理论的倾斜煤层底板突水危险区域分析[J].采矿与安全工程学报,2017,34(4):655-662. SUN Jian,WANG Lianguo,LU Haifeng. The analysis of the water-inrush dangerous areas in the inclined coal seam floor based on the theory of water-resisting key strata[J]. Journal of Mining&Safety Engineering,2017,34(4):655-662.
[12] 鲁海峰,孟祥帅,张元,等.采场底板层状结构关键层隔水性能力学分析[J].中国矿业大学学报,2020,49(6):1057-1066. LU Haifeng,MENG Xiangshuai,ZHANG Yuan,et al. Mechanical analysis of water barrier performance of floor layered structure key stratum on coal face[J]. Journal of China University of Mining&Technology,2020,49(6):1057-1066.
[13] 冯梅梅,茅献彪,朱庆华.底板隔水层岩性组合特征对隔水性能的影响[J].采矿与安全工程学报,2010,27(3):404-409. FENG Meimei,MAO Xianbiao,ZHU Qinghua. Effect of lithologic association of the water-resisting strata in coal seam floor on water insulating[J]. Journal of Mining&Safety Engineering,2010,27(3):404-409.
[14] 孙强,刘恒凤,张吉雄,等.充填开采隔水关键层渗流稳定性力学模型及分析[J].采矿与安全工程学报,2022,39(2):273-281. SUN Qiang,LIU Hengfeng,ZHANG Jixiong,et al. Mechanical model and analysis of seepage stability in key aquiclude strata during backfill mining[J]. Journal of Mining&Safety Engineering,2022,39(2):273-281.
[15] 阮浩.基于欧拉梁理论的风电叶片疲劳试验弯矩匹配优化方法研究[D].重庆:重庆理工大学,2023. RUAN Hao. Research on optimization method of bending moment matching in fatigue test of wind turbine blades based on Euler beam theory[D]. Chongqing:Chongqing University of Technology,2023.
[16] 谢丹,黄勇刚.大挠度欧拉梁三参数曲率模型及其在平面柔顺机构中的应用[J].机械工程学报,2021,57(13):144-152. XIE Dan,HUANG Yonggang. Novel model with three curvature variables for Euler beam under large deflection and its application in planar compliant mechanisms[J]. Journal of Mechanical Engineering,2021,57(13):144-152.
[17] 祝卫亮,葛耀君.悬索桥桁架加劲梁动力等效成等截面欧拉梁方法[J].哈尔滨工业大学学报,2020,52(9):17-24. ZHU Weiliang,GE Yaojun. Simplified method for dynamic equivalent Euler beam of truss girder in suspension bridge[J]. Journal of Harbin Institute of Technology,2020,52(9):17-24.
[18] 余阳,杨洋.基于非局部应变梯度欧拉梁模型的充流单壁碳纳米管波动分析[J].振动与冲击,2017,36(8):1-8. YU Yang,YANG Yang. Wave propagation of fluid-filled single-walled carbon nanotubes based on the nonlocal-strain gradient theory[J]. Journal of Vibration and Shock,2017,36(8):1-8.
[19] 夏桂云,曾庆元.深梁理论的研究现状与工程应用[J].力学与实践,2015,37(3):302-316. XIA Guiyun,ZENG Qingyuan. Timoshenko beam theory and its applications[J]. Mechanics in Engineering,2015,37(3):302-316.
[20] TIMOSHENKO S P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. The Philosophical Magazine:A Journal of Theoretical Experimental and Applied Physics,1921,41(245):744-746.
[21] 王妍,姚多喜,鲁海峰.高水压作用下煤层底板隔水关键层弹性力学解[J].煤田地质与勘探,2019,47(1):127-132. WANG Yan,YAO Duoxi,LU Haifeng. Elastic mechanics solution of water proof key layer in coal seam floor under high water pressure[J]. Coal Geology&Exploration,2019,47(1):127-132.
[22] 李博,刘子捷.煤层底板富水承压溶洞突水力学模型构建及突水判据研究[J].煤炭科学技术,2022,50(5):232-237. LI Bo,LIU Zijie. Construction of mechanical model of water inrush from water-rich confined Karst cave in coal seam floor and study on criterion[J]. Coal Science and Technology,2022,50(5):232-237.
[23] 刘泽威,刘其声,刘洋.煤层底板隐伏断层分类及突水防治措施[J].煤田地质与勘探,2020,48(2):141-146. LIU Zewei,LIU Qisheng,LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology&Exploration,2020,48(2):141-146.
[24] HUANG Pinghua,HU Yongsheng,GAO Hongfei,et al. Dynamic identification and radium-radon response mechanism of floor mixed water source in high ground temperature coal mine[J]. Journal of Hydrology,2021,603(Part B)
[25] SUN Ming,GUO Chen,ZHENG Wenxiang,et al. Study on broken floor rock mass by mining underground pressure[J]. Mathematical Problems in Engineering,2021,2021:3797188.
[26] LI Qiang,MENG Xiangxi,LIU Yuben. Sensitivity analysis of water inrush evaluation model based on the theory of water resistant key strata:A case study in a coal mine,China[J]. Earth Science Informatics,2022,15(4):2481-2494.
[27] 段建华.煤层底板突水综合监测技术及其应用[J].煤田地质与勘探,2020,48(4):19-28. DUAN Jianhua. Integrated monitoring technology of water inrush from coal seam floor and its application[J]. Coal Geology&Exploration,2020,48(4):19-28.
[28] 虎维岳,赵春虎,吕汉江.煤层底板水害区域注浆治理影响因素分析与高效布孔方式[J].煤田地质与勘探,2022,50(11):134-143. HU Weiyue,ZHAO Chunhu,LÜ Hanjiang. Main influencing factors for regional pre-grouting technology of water hazard treatment in coal seam floor and efficient hole arrangement[J]. Coal Geology&Exploration,2022,50(11):134-143.
[29] 马凯,尹立明,陈军涛,等.深部开采底板隔水关键层受局部高承压水作用破坏理论分析[J].岩土力学,2018,39(9):3213-3222. MA Kai,YIN Liming,CHEN Juntao,et al. Theoretical analysis on failure of water-resisting key strata in the floor by local high confined water in deep mining[J]. Rock and Soil Mechanics,2018,39(9):3213-3222.
[30] 马凯.受局部高承压水与多含水层影响的深部底板突水危险性理论分析与验证[D].青岛:山东科技大学,2019. MA Kai. Theoretical analysis and verification of water inrush danger in deep mining affected by local high confined water and multiple aquifers[D]. Qingdao:Shandong University of Science and Technology,2019.
[31] 姚明豪.新桥煤矿底板隔水层结构特征与阻隔水能力研究[D].徐州:中国矿业大学,2019. YAO Minghao. Study on structural characteristics of the floor aquifuge and water-resisting ability of xinqiao coalmine[D]. Xuzhou:China University of Mining and Technology,2019. [32] 张建民,李全生,张勇,等.煤炭深部开采界定及采动响应分析[J].煤炭学报,2019,44(5):1314-1325. ZHANG Jianmin,LI Quansheng,ZHANG Yong,et al. Definition of deep coal mining and response analysis[J]. Journal of China Coal Society,2019,44(5):1314-1325.
[33] 朱庆伟,李航,杨小虎,等.采动覆岩结构演化特征及对地表沉陷的影响分析[J].煤炭学报,2019,44(增刊1):9-17. ZHU Qingwei,LI Hang,YANG Xiaohu,et al. Influence analysis of between subsidence and structure evolution in overburden rock under mining[J]. Journal of China Coal Society,2019,44(Sup.1):9-17.
[34] 吴家龙.弹性力学[M]. 3版.北京:高等教育出版社,2016. [35] 刘亮,胡玉茹,张元海.用材料力学公式计算任意截面短梁正应力时的修正项研究[J].计算力学学报,2015,32(3):383-387. LIU Liang,HU Yuru,ZHANG Yuanhai. Study on modification term for normal stress of short beam with arbitrary cross section by applying formula in material mechanics[J]. Chinese Journal of Computational Mechanics,2015,32(3):383-387.
[36] 徐芝纶.弹性力学-下册[M]. 5版.北京:高等教育出版社,2016. [37] 高荣誉,范家让.叠层深梁的精确解[J].合肥工业大学学报(自然科学版),2009,32(5):738-741. GAO Rongyu,FAN Jiarang. An exact solution of deep laminated beams[J]. Journal of Hefei University of Technology (Natural Science),2009,32(5):738-741.
[38] 丁大钧,刘伟庆.深梁杆件力学解[J].工程力学,1993,10(1):10-18. DING Dajun,LIU Weiqing. Solution of deep beams based on mechanics of bar system[J]. Engineering Mechanics,1993,10(1):10-18.
[39] 陈林之,李章政.均布荷载作用下连续深梁问题的级数解答[J].机械,2005,32(9):30-32. CHEN Linzhi,LI Zhangzheng. Series solution for continuous deep beam subjected to uniform loads[J]. Machinery,2005,32(9):30-32.
[40] 刘鸿文.材料力学(第五版)[M].北京:高等教育出版社,2014. [41] QIAN Minggao,MIAO Xiexing,Ll Liangjie. Mechanical behaviour of main floor for water inrush in longwall mining[J]. Journal of China University of Mining and Technology,1995(1):9-16.
-
期刊类型引用(2)
1. 文国军,黄子恒,王玉丹,史垚城,姜宇昊. 基于仿真数据驱动的激光钻进气体喷嘴结构优化. 钻探工程. 2024(03): 69-75 . 百度学术
2. 刘旭堂,黄梦婕,王伟. 机械式激光窗口结构设计与防尘罩抗风载能力研究. 四川轻化工大学学报(自然科学版). 2022(01): 59-66 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 22
- HTML全文浏览量: 1
- PDF下载量: 2
- 被引次数: 2