华北煤系变形特征与煤矿瓦斯赋存规律

王蔚, 卫彦昭, 贾天让, 闫江伟

王蔚, 卫彦昭, 贾天让, 闫江伟. 华北煤系变形特征与煤矿瓦斯赋存规律[J]. 煤田地质与勘探, 2021, 49(6): 121-130. DOI: 10.3969/j.issn.1001-1986.2021.06.015
引用本文: 王蔚, 卫彦昭, 贾天让, 闫江伟. 华北煤系变形特征与煤矿瓦斯赋存规律[J]. 煤田地质与勘探, 2021, 49(6): 121-130. DOI: 10.3969/j.issn.1001-1986.2021.06.015
WANG Wei, WEI Yanzhao, JIA Tianrang, YAN Jiangwei. Deformation characteristics of coal measures and gas occurrence law of coal mines in North China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 121-130. DOI: 10.3969/j.issn.1001-1986.2021.06.015
Citation: WANG Wei, WEI Yanzhao, JIA Tianrang, YAN Jiangwei. Deformation characteristics of coal measures and gas occurrence law of coal mines in North China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 121-130. DOI: 10.3969/j.issn.1001-1986.2021.06.015

 

华北煤系变形特征与煤矿瓦斯赋存规律

基金项目: 

河南省科技攻关项目 202102310221

河南省科技攻关项目 202102310619

河南省高等学校重点科研项目 20A430016

详细信息
    作者简介:

    王蔚,1983年生,男,河南焦作人,博士,讲师,硕士生导师,从事瓦斯地质与瓦斯防治、瓦斯地质信息化等方面的研究. E-mail:wangweihpu@hpu.edu.cn

    通讯作者:

    贾天让,1979年生,男,河南夏邑人,博士,副教授,硕士生导师,从事瓦斯地质与瓦斯防治、瓦斯地质信息化等方面的研究. E-mail:jiatianrang@126.com

  • 中图分类号: TD712

Deformation characteristics of coal measures and gas occurrence law of coal mines in North China

  • 摘要: 瓦斯既是煤矿灾害的致灾因素之一,又是重要的清洁能源,厘清煤系变形瓦斯赋存规律是煤矿瓦斯灾害预防和煤层气高效开发的基础。以华北煤系为研究对象,以构造演化及控制为主线,运用板块构造、构造演化和瓦斯赋存构造逐级控制等理论,系统研究华北煤系变形特征与煤矿瓦斯赋存规律。结果表明,华北板块处于三大构造域相互作用交接的中心,控制着华北板块的形成与演化,华北板块与周缘板块之间的相互作用制约煤系的形成、赋存和变形,控制构造煤的形成与分布,同时控制着煤矿瓦斯的生成、运移和保存;华北煤系变形强度具有由板缘向板内、由挤压型造山带向远离造山带减弱的趋势;构造煤的形成与分布和构造演化过程中煤系变形有较好的一致性,构造煤的发育程度也具有由板缘向板内以及由靠近挤压型造山带向远离造山带减弱的趋势,伸展构造带构造煤不发育,但伸展背景下形成的大型滑脱构造容易形成成层发育的构造煤;华北煤矿瓦斯分布具有明显的区带特征,可划分为7个高突瓦斯区和6个低瓦斯区,进一步划分为15个高(突)瓦斯带和13个低瓦斯带。研究成果对国家有的放矢的瓦斯治理和煤层气开发具有重要的指导意义。
    Abstract: Gas is not only one of the important disaster-causing factors in coal mines, but also an important clean energy. Understanding the deformation characteristics of coal measures and the occurrence of gas is the basis for coal mine gas disaster prevention and coalbed methane development. Taking the North China coal measures as the research object, taking the tectonic evolution and control as the main line, using the theory of plate tectonics, tectonic evolution and step by step control of gas-occurring structures, the deformation characteristics of the North China coal-measures and the law of coal mine gas occurrence were systematically studied. The research results show that the North China Plate is at the center of the interaction and junction of the three major tectonic domains and controls the formation and evolution of the coal measures. The interaction between the North China Plate and the peripheral plates restricted the formation, occurrence and deformation of the coal-measure strata, controlled the formation and distribution of tectonic coal, thereby controlling the generation, migration and preservation of coal mine gas; The deformation strength of the North China coal measures has a tendency to weaken from the edge of the plate to the interior of the plate, from the compression orogenic belt to the far orogenic belt; The formation and distribution of coal measures are in good agreement with the deformation of coal measures in the process of tectonic evolution. The development degree of tectonic coal also has a tendency to weaken from the edge of the plate to the interior of the plate and from the nearby compression orogenic belt to the far the orogenic belt. The tectonic coal is not developed in the extending tectonic zones, but the large detachment structures formed under the extensional background is easy to form layered tectonic coal; The gas distribution in North China coal mines has obvious regional characteristics, which can be divided into 7 high gas outburst areas and 6 low gas areas, further divided into 15 high (abrupt) gas belts and 13 low gas belts. The research results have important guiding significance for targeted gas control and coalbed methane development.
  • 煤层属于典型的裂缝型介质,其裂缝发育特征对煤层气(瓦斯)的运移渗透和解析开采等影响显著[1]。所以,针对煤层裂缝的探测和评价具有重要的应用价值。但通常情况下,煤层中裂缝的横向变化规律复杂、差异大,远井区难以采用测井信息进行控制和直接评估,为此,有必要依托三维地震勘探资料并联合测井信息开展横向范围内的煤层裂缝评价工作[2-3]

    在地质构造运动过程中,上覆地层压力作用使得煤层中近水平向的裂缝呈关闭状态;而水平方向的构造应力作用使得煤层中近垂向的裂缝呈张开状态,可简化为HTI (Horizontal Transversely Isotropic)型介质。地震波在HTI型介质界面和内部传播时,表现出显著的方位各向异性特征,这也为地震勘探和评价煤层裂缝特征提供了理论依据[4-5]。基于方位各向异性理论,董守华[2-3]计算了HTI型煤层顶底板反射系数随方位角变化的响应特征;陈同俊等[6-7]通过方位AVO(Amplitude Variation with Offset)模拟,分析了HTI型构造煤的可探测性;张亚兵等[8]利用阻尼最小二乘算法计算了AVOA (Amplitude Variation with Offset and Azimuth)属性,预测煤层的裂缝分布;彭苏萍等[9]通过正演模拟分析了裂缝密度、裂缝开度和裂缝填充物对HTI煤层AVO响应特征的影响;卢勇旭等[10]推导了HTI薄煤层平面波的反射系数计算公式,计算分析了各向异性薄煤层的AVAZ响应特征;李勤等[11-14]通过正演模拟分析了HTI型煤层裂隙密度、裂隙充填物以及煤层厚度等参数变化时的地震波响应特征。上述研究多专注于不同裂缝状态下的煤层地震AVO/AVOA响应分析,而随着岩石物理的发展,从地震岩石物理角度对裂缝进行精细刻画和多角度描述成为了新的发展趋势。

    为此,笔者从地震岩石物理建模出发,利用等效介质理论对HTI型煤层中的裂缝进行表征,建立煤层裂缝参数与各向异性系数的关系,进而计算得到裂缝参数的纵、横波速度,各向异性系数,煤层顶界面各向异性梯度项和P-P波反射系数的响应,并制作合成地震记录,分析HTI型煤层的方位各向异性特征,以期为煤田地震勘探数据精细处理、成像和反演等提供基础理论依据。

    通过地震岩石物理建模可直接建立裂缝参数与地震响应间的量化关系。先基于等效介质理论模型对HTI型煤层裂缝进行表征,其刚度矩阵表示为:

    $$ {\boldsymbol{C}} = \left[ {\begin{array}{*{20}{c}} {{c_{11}}}&{{c_{13}}}&{{c_{13}}}&0&0&0 \\ {{c_{13}}}&{{c_{33}}}&{{c_{23}}}&0&0&0 \\ {{c_{13}}}&{{c_{23}}}&{{c_{33}}}&0&0&0 \\ 0&0&0&{{c_{44}}}&0&0 \\ 0&0&0&0&{{c_{66}}}&0 \\ 0&0&0&0&0&{{c_{66}}} \end{array}} \right] $$ (1)

    式中:c11c33c44c66c13c23均为刚度矩阵参数。

    依据HTI介质的特点,将HTI型煤层裂缝建模分为两部分:一部分是煤基质干骨架,另一部分是含饱和流体的垂向裂缝,如图1所示。

    图  1  HTI型煤层裂缝的表征
    Figure  1.  Characterization of fractures in HTI coal seams

    对HTI型煤层裂缝进行表征时,先由煤基质骨架中加入垂向干裂缝计算等效弹性模量,再充入流体计算含饱和流体裂缝煤层的等效弹性模量。计算煤层的裂缝密度时,采用裂缝密度 $ e $ 表示:

    $$ e = \frac{{3{\phi _{\text{f}}}}}{{4{\text{π }}{\alpha _{\text{f}}}}} $$ (2)

    式中: $\phi {}_{\text{f}}$ 为裂缝孔隙率; $ {\alpha _{\text{f}}} $ 为裂缝纵横比。

    式(2)表明,裂缝孔隙率和纵横比参数共同决定了地层的裂缝密度特征。

    基于Mori-Tanaka模型计算含垂向干裂缝煤层的等效弹性常量 $ c_{ij}^{{\text{dry}}} $ [15-16],表示为:

    $$ \left\{ \begin{split} & {c_{11}^{{\text{dry}}} = \left( {{K_1} + \frac{4}{3}{\mu _1}} \right)\left( {1 - \frac{1}{\varOmega }} \right)} \\ & {c_{33}^{{\text{dry}}} = \left( {{K_1} + \dfrac{4}{3}{\mu _1}} \right) - \dfrac{{{{\left( {{K_1} - \dfrac{2}{3}{\mu _1}} \right)}^2}}}{{\left( {{K_1} + \dfrac{4}{3}{\mu _1}} \right)\varOmega }}} \\ & {c_{44}^{{\text{dry}}} = {\mu _1}} \\ & {c_{66}^{{\text{dry}}} = {\mu _1}\frac{Y}{{1 + Y}}} \\ & {c_{13}^{{\text{dry}}} = \left( {{K_1} - \frac{2}{3}{\mu _1}} \right)\left( {1 - \frac{1}{\varOmega }} \right)} \\ &c_{23}^{{\rm{dry}}} = \left( {{K_1} - \dfrac{2}{3}{\mu _1}} \right) - \frac{{{K_1} - \dfrac{2}{3}{\mu _1}}}{{\left( {{K_1} + \dfrac{4}{3}{\mu _1}} \right)\varOmega }} \end{split} \right. $$ (3)

    其中, $\varOmega$ $ Y $ 的表达式为:

    $$ \left\{ \begin{split} & {\varOmega \approx 1 + \frac{{3\left( {1 - 2{\upsilon _1}} \right)}}{{16e{{(1 - {\upsilon _1})}^2}}}} \\ & {Y = \frac{{9\left( {3{K_1} + 2{\mu _1}} \right)}}{{16e\left( {3{K_1} + 4{\mu _1}} \right)}}} \end{split} \right. $$ (4)

    式中: $ {K_1} $ $ {\mu _1} $ 分别为煤基质干骨架的体积模量和剪切模量,GPa; $ {\upsilon _1} $ 为煤基质干骨架的泊松比;上标dry为干裂缝。

    煤层裂缝中通常含有饱和流体(通常为煤层水和游离气),先采用Wood平均计算流体等效体积模量,再采用各向异性介质流体替换公式计算含饱和流体裂缝煤层的等效弹性常量[17],表示为:

    $$ s_{ijkl}^{{\text{sat}}} = s_{ijkl}^{{\text{dry}}} - \frac{{\left( {s_{ijaa}^{{\text{dry}}} - s_{ijaa}^0} \right)\left( {s_{bbkl}^{{\text{dry}}} - s_{bbkl}^0} \right)}}{{\left( {s_{ccdd}^{{\text{dry}}} - s_{ccdd}^0} \right) + {\phi _{\text{f}}}\left( {{\beta _{{\text{fl}}}} - {\beta _0}} \right)}} $$ (5)

    式中: $ s_{ijkl}^{{\text{sat}}} $ 为含饱和流体裂缝煤的等效柔度张量; $ s_{ijkl}^{{\text{dry}}} $ 为煤基质干骨架等效柔度张量; $ s_{ijaa}^0 $ 为煤基质颗粒的柔度张量;β0βf1分别为煤基质颗粒的和流体的可压缩性,即K0Kf1的倒数。柔度张量sijkl与刚度张量cijkl是逆的关系。

    柔度(刚度)张量的下标ijkl为四阶张量表示方法,可依据表1简化为二阶的形式与式(1)对应。

    表  1  柔度(刚度)张量下标的简化
    Table  1.  Implication of subscripts of flexibility (stiffness) tensors
    四阶( $ ij $/ $ kl $) 二阶(I/J)
    11 1
    22 2
    33 3
    23,32 4
    13,31 5
    12,21 6
    下载: 导出CSV 
    | 显示表格

    式(5)中下标ijkl存在2个相同的符号,如aabbccdd,表示ijkl分别等于11,22,33时的求和[18],即:

    $$ \left\{ \begin{split} & {s_{ijaa}^{{\text{dry}}} = s_{ij11}^{{\text{dry}}} + s_{ij22}^{{\text{dry}}} + s_{ij33}^{{\text{dry}}}} \\ & {s_{bbkl}^{{\text{dry}}} = s_{11kl}^{{\text{dry}}} + s_{22kl}^{{\text{dry}}} + s_{33kl}^{{\text{dry}}}} \\ & s_{ccdd}^{{\text{dry}}} = s_{1111}^{{\text{dry}}} + s_{1122}^{{\text{dry}}} + s_{1133}^{{\text{dry}}} + s_{2211}^{{\text{dry}}} + \\ &\qquad s_{2222}^{{\text{dry}}} + s_{2233}^{{\text{dry}}} + s_{3311}^{{\text{dry}}} + s_{3322}^{{\text{dry}}} + s_{3333}^{{\text{dry}}} \end{split} \right. $$ (6)

    进一步计算HTI型煤层的地震参数响应。基于含饱和流体裂缝煤层的等效弹性常量计算结果,计算HTI介质条件下垂向( $\bot $ )和水平向(_)的地震波速度表示为:

    $$ \left\{ \begin{split} & {{v_{{\text{P\_}}}} = \sqrt {\frac{{{c_{11}}}}{\rho }} } \\ & {{v_{{\text{P}} \bot }} = \sqrt {\frac{{{c_{33}}}}{\rho }} } \\ & {{v_{{\text{S}} \bot }} = \sqrt {\frac{{{c_{44}}}}{\rho }} } \\ & {{v_{{\text{S\_}}}} = \sqrt {\frac{{{c_{66}}}}{\rho }} } \end{split} \right. $$ (7)

    各向异性系数(ε(v)γ(v)δ(v))[19]表示为:

    $$ \left\{ \begin{split} & {{\varepsilon ^{({\text{v}})}} = \frac{{{c_{11}} - {c_{33}}}}{{2{c_{33}}}}} \\ & {{\gamma ^{({\text{v}})}} = \frac{{{c_{66}} - {c_{44}}}}{{2{c_{44}}}}} \\ & {{\delta ^{({\text{v}})}} = \frac{{{{({c_{13}} + {c_{66}})}^2} - {{({c_{33}} - {c_{66}})}^2}}}{{2{c_{33}}({c_{33}} - {c_{66}})}}} \end{split} \right. $$ (8)

    将式(8)计算的各向异性系数代入到HTI介质条件下的P-P波反射系数近似公式[19-20],即可计算出P-P波反射系数( $ {R_{{\text{PP}}}} $ )、各向异性梯度项( $ {G_{{\text{ani}}}} $ )等地震参数,表示为:

    $$ \begin{split} & {R_{{\text{PP}}}}(\theta ,\psi ) = \frac{1}{2}\frac{{\Delta Z}}{{\bar Z}} + \frac{1}{2}\left\{ \frac{{\Delta {v_{\text{P}}}}}{{ {{\bar v_{\text{P}}}} }} - {{\left( {\frac{{2 {{\bar v_{\text{S}}}} }}{{ {{\bar v_{\text{P}}}} }}} \right)}^2}\frac{{\Delta G}}{{\bar G}} +\right.\\ &\qquad \left.\left[ {\Delta {\delta ^{({\text{v}})}} + 2{{\left( {\frac{{2 {{\bar v_{\text{S}}}} }}{{ {{\bar v_{\text{P}}}} }}} \right)}^2}\Delta {\gamma ^{({\text{v}})}}} \right]{{\cos }^2}\psi \right\}{\sin ^2}\theta {\text{ + }} \\ & \qquad \frac{1}{2}\left\{ {\frac{{\Delta {v_{\text{P}}}}}{{ {{\bar v_{\text{P}}}} }} + \Delta {\varepsilon ^{({\text{v}})}}{{\cos }^4}\psi + \Delta {\delta ^{({\text{v}})}}{{\sin }^2}\psi {{\cos }^2}\psi } \right\}{\sin ^2}\theta {\tan ^2}\theta \end{split} $$ (9)
    $$ {G_{{\text{ani}}}} = \frac{1}{2}\left[ {\Delta {\delta ^{({\text{v}})}} + 2{{\left( {\frac{{2 {{\bar v_{\text{S}}}} }}{{ {{\bar v_{\text{P}}}} }}} \right)}^2}\Delta {\gamma ^{({\text{v}})}}} \right] $$ (10)

    式中: $ \theta $ $ \psi $ 分别为入射角和方位角; $ {v_{\text{P}}} $ $ {v_{\text{S}}} $ 分别为纵波速度和横波速度; $ Z = \rho {v_{\text{P}}} $ 为垂向纵波波阻抗; $ G = \rho v_{\text{S}}^2 $ 为垂向剪切模量; $ \;\Delta {\varepsilon ^{({\text{v}})}} = \varepsilon _2^{({\text{v}})} - \varepsilon _1^{({\text{v}})} $ $\;\Delta {\gamma ^{({\text{v}})}} = \gamma _2^{({\text{v}})} - \gamma _1^{({\text{v}})}$ $ \Delta {\delta ^{({\text{v}})}} = \delta _2^{({\text{v}})} - \delta _1^{({\text{v}})} $ $\bar Z = \dfrac{{{Z_1} + {Z_2}}}{2}$ $\bar G = \dfrac{{{G_1} + {G_2}}}{2}$ ${{\bar v_{\text{P}}}} = \dfrac{{{v_{{\text{P}}1}} + {v_{{\text{P}}2}}}}{2}$ ${{\bar v_{\text{S}}}} = \dfrac{{{v_{{\text{S}}1}} + {v_{{\text{S}}2}}}}{2}$ $ {Z_1} $ $ {G_1} $ $ {v_{{\text{P1}}}} $ $ {v_{{\text{S1}}}} $ $ \varepsilon _1^{({\text{v}})} $ $ \gamma _1^{({\text{v}})} $ $ \delta _1^{({\text{v}})} $ $ {Z_2} $ $ {G_2} $ $ {v_{{\text{P2}}}} $ $ {v_{{\text{S2}}}} $ $ \varepsilon _2^{({\text{v}})} $ $ \gamma _2^{({\text{v}})} $ $ \delta _2^{({\text{v}})} $ 分别为反射界面上层和下层的参数。

    进一步将式(9)计算的煤层顶、底界面的P-P波反射系数与Ricker子波卷积,得到HTI型煤层的合成地震记录响应,表示为:

    $$ {\boldsymbol{d}}(\theta ,\psi ) = {\boldsymbol{W}}{R_{{\text{PP}}}}(\theta ,\psi ) + {\boldsymbol{n}} $$ (11)

    式中:W为子波矩阵;n为噪声。

    正演模拟得到的垂向和水平向煤层纵、横波速度与裂缝参数的关系如图2所示。相同裂缝参数状态下,水平向的纵、横波传播受到裂缝的影响,显著低于垂向的纵横波速度。裂缝孔隙度增大或纵横比减小,垂向的纵波速度微弱减小,横波速度不变,而水平向的纵、横波速度显著减小;且水平向纵波速度对裂缝孔隙度变化敏感,受裂缝纵横比影响不大,而水平向横波速度对裂缝孔隙度和纵横比变化均敏感。

    图  2  HTI型煤层垂向和水平向纵、横波速度与裂缝参数的关系
    Figure  2.  Vertical and the horizontal P- and S- wave velocities vs. fracture parameters of HTI coal seams

    计算得到垂向和水平向纵、横波速度与裂缝密度的关系如图3所示。随着裂缝密度的增加,垂向纵波速度微弱减小,横波速度不变;水平向纵横波速度均显著减小,且横波速度减小更为明显。

    图  3  煤层垂向和水平向纵、横波速度与裂缝密度的关系
    Figure  3.  Vertical and horizontal P- and S- wave velocities vs. fracture density of coal seams

    进一步基于含饱和裂缝流体煤层的等效弹性常量 $ c_{ij}^{{\text{sat}}} $ 计算HTI介质条件下的煤层各向异性系数(ε(v)γ(v)δ(v)),图4图5所示为各向异性系数与裂缝孔隙度、纵横比和裂缝密度的关系。其中,各向异性系数ε(v)用于衡量纵波速度的各向异性,与水平向纵波速度的变化特征相一致(图2);各向异性系数γ(v)用于衡量横波速度的各向异性,与水平向横波速度的变化特征相一致(图2)。各向异性系数δ(v)受裂缝孔隙度和纵横比的影响均显著。

    图  4  各向异性系数(ε(v)γ(v)δ(v))与裂缝参数的关系
    Figure  4.  Anisotropic coefficients ε(v), γ(v) and δ(v) vs. fracture parameters
    图  5  各向异性系数(ε(v)γ(v)δ(v))与裂缝密度的关系
    Figure  5.  Anisotropic coefficients ε(v), γ(v) and δ(v) vs. fracture density

    图5可知,随着裂缝密度的增大,各向异性系数ε(v)γ(v)δ(v)绝对值均不同程度的增大,各向异性系数ε(v)增大幅度明显小于各向异性系数γ(v)δ(v),表明裂缝密度增大主要引起横波各向异性的显著增强。

    设置如图6所示的三层水平层状HTI型煤层模型;顶板和底板均为各向同性的泥岩,纵波速度为3.0 km/s,横波速度为2.0 km/s,密度为2.3 g/cm3;煤层设置为HTI型含饱和流体裂缝煤层,厚度为5 m。

    图  6  三层水平层状HTI型煤层模型
    Figure  6.  HTI coal seam model consisting of three horizontal layers

    计算得到煤层顶界面各向异性梯度项与裂缝孔隙度、纵横比和裂缝密度的关系如图7所示。由图7可知,随着裂缝孔隙度增大或纵横比减小,各向异性梯度项绝对值增大;随着裂缝密度的增大,各向异性梯度项绝对值增大。

    图  7  煤层顶界面各向异性梯度项与裂缝孔隙度、纵横比和裂缝密度的关系
    Figure  7.  Anisotropic gradient of coal seams’ top interface vs. the porosity, aspect ratio and density of fractures

    依据式(9)计算煤层顶界面P-P波反射系数的响应情况,如图8所示。垂直入射时,即入射角为0,则P-P波反射系数不具有方位各向异性。由图8可知,入射角或裂缝密度增大,P-P波反射系数方位特性增强;方位角为0时,裂缝密度变化引起的P-P波反射系数变化显著,而方位角为90°时,P-P波反射系数不受裂缝密度的影响。

    图  8  煤层顶界面P-P波反射系数与裂缝密度和方位角的关系
    Figure  8.  P-P reflection coefficient of coal seams’ top interface vs. fracture density and azimuth

    依据式(11),利用煤层顶界面和底界面的P-P波反射系数与40 Hz的Ricker子波进行卷积,得到不同入射角、裂缝密度条件下的方位角度道集,如图9所示。由图9可知,入射角不为0时,裂缝密度变化引起的合成地震记录的方位各向异性特征显著,具体表现为裂缝密度增大,合成地震记录的方位各向异性增强。

    图  9  HTI型煤层的合成地震记录响应
    Figure  9.  Synthetic seismic records of HTI coal seams

    统计图9所示方位角度道集的反射复合波最大正振幅值(Amax),如图10所示。由图10可知,入射角θ=0时,合成地震记录的最大正振幅不显示方位各向异性;入射角θ>0时,入射角或裂缝密度的增大,引起的P-P波反射系数和煤层反射复合波最大正振幅方位各向异性增强;且方位角ψ=0时,裂缝密度变化引起的反射复合波最大正振幅变化显著;方位角ψ=90°时,反射复合波最大正振幅不受裂缝密度影响。

    图  10  HTI型煤层合成地震记录的最大正振幅响应
    Figure  10.  Maximum positive amplitude of synthetic seismic records of HTI coal seams

    煤层的裂缝密度由裂缝孔隙度和纵横比2个参数控制,而在实际生产中,裂缝纵横比参数难以获取,且传统地震AVOA反演的裂缝密度为相对值。所以,准确获取煤层的裂缝孔隙度以评价煤层裂缝特性,是较为实际的选择。由图2图4可知,纵波速度和各向异性系数ε(v)受裂缝孔隙度的影响显著,而受裂缝纵横比的影响微弱;这无疑为通过煤样超声波测试、声波测井反演或解释、井约束的纵波地震反演等方法计算获取煤层的裂缝孔隙度提供了有效途径。

    在煤田地震勘探中不可回避一个问题是煤层的薄层特性,其直接导致煤层的反射波多为复合波[10, 21-22]图8中煤层顶界面P-P波反射系数值和图10中5 m厚煤层反射复合波的最大正振幅值都显现出方位各向异性特征(θ>0),但这种方位各向异性的强弱和规律会随着煤厚的变化而变化。因此,在煤厚变化大的勘探区内,地震AVOA反演的适用性以及反演结果的精度是难以保证的。

    a. 基于等效介质理论建模对煤层垂向裂缝进行表征,并通过三层HTI型煤层模型正演模拟得到煤层裂缝参数的地震AVOA响应。模拟结果表明裂缝密度变化引起水平向纵、横波速度和各向异性系数,以及煤层顶界面各向异性梯度项变化显著;水平向纵波速度、各向异性系数ε(v)受裂缝孔隙度影响显著,受裂缝纵横比影响微弱,而水平向横波速度、各向异性系数γ(v)δ(v)以及煤层顶界面各向异性梯度项对裂缝孔隙度和纵横比变化均敏感。

    b. 入射角等于0时,P-P波反射系数和煤层反射复合波最大正振幅不具有方位各向异性特征。入射角大于0时,入射角或裂缝密度的增大,引起的P-P波反射系数和煤层反射复合波最大正振幅方位特性增强;方位角为0时,即垂直于裂缝走向入射,裂缝密度变化引起的P-P波反射系数和煤层反射复合波最大正振幅变化显著,而方位角为90°时,即平行于裂缝走向入射,P-P波反射系数和煤层反射复合波最大正振幅不受裂缝密度的影响。

  • 图  1   华北克拉通区域构造位置[33]

    Fig.  1   Location of the North China craton regional tectonics[33]

    图  2   华北赋煤区煤系变形分区

    ①北缘断裂带;②华北赋煤区南缘断裂带;③郯庐断裂带;④遵化–包头基底隆起带;⑤鄂尔多斯西缘逆冲断裂带;⑥华北含煤盆地南缘逆冲断裂带;⑦昌平–宁河断裂带;⑧丰沛断裂带;⑨离石断裂带;⑩紫荆关断裂带

    Fig.  2   Deformation zones of coal measures in North China coal-bearing areas

    图  3   华北赋煤区构造煤分布

    Fig.  3   Tectonic coal distribution in North China coal-bearing areas

    图  4   华北赋煤区煤矿瓦斯地质简图

    Fig.  4   Sketch map of coal mine gas geology in North China coal-bearing areas

    表  1   华北赋煤区煤系变形分区分带与构造煤特征

    Table  1   Deformation of coal measures and development characteristics of tectonic coal in coal-bearing areas of North China

    变形区 煤系下移变形带 构造变形性质 构造煤发育特征
    华北板块北缘强挤压变形区 北部强挤压变形带 强挤压变形,强度由北向南递减 主要为Ⅲ–Ⅳ类构造煤
    北部弱挤压变形带 东段京(东)津唐煤田煤系变形强度中等,中段变形强度在中环带最为显著,西段蔚县变形强度中等 京西煤田主要为Ⅲ–Ⅳ类构造煤,京津唐煤田局部发育Ⅲ–Ⅳ类构造煤,冀北蔚县煤田构造煤不发育
    鄂尔多斯盆地西缘强挤压变形区 鄂尔多斯盆地西缘强挤压变形带 强挤压变形,强度由盆缘向盆地内部递减 主要为Ⅲ–Ⅳ类构造煤
    华北板块南缘强挤压变形区 陕豫皖逆冲推覆构造变形带 强挤压变形,强度由南向北递减 主要为Ⅲ–Ⅳ类构造煤
    豫西–徐淮构造变形带 强变形,豫西重力滑动下的强挤压剪切变形,徐淮逆冲推覆下的挤压变形 豫西普遍发育Ⅳ–Ⅴ类构造煤,徐淮主要为Ⅲ–Ⅳ类构造煤,豫东构造煤不发育
    鄂尔多斯盆地弱变形区 鄂尔多斯盆地弱挤压变形带 弱挤压变形 以原生结构煤为主,构造煤不发育
    山西地块过渡变形区 山西地块过渡变形带 弱挤压与伸展变形 以原生结构煤为主,在盆缘及构造局部发育Ⅱ–Ⅲ类构造煤
    渤海湾盆地伸展变形区 渤海湾盆地强烈伸展变形带 强烈伸展变形 以原生结构煤为主
    鲁西强烈伸展变形带 强烈伸展变形 以原生结构煤为主,局部受重力滑动影响发育小规模构造煤
    太行山东麓挤压变带 挤压变形,变形由造山带内侧向外侧减弱 主要为Ⅲ–Ⅳ类构造煤,局部发育Ⅳ–Ⅴ类构造煤
    注:Ⅰ类—原生结构煤(非破坏煤);Ⅱ类—碎裂结构煤(破坏煤);Ⅲ类—碎粒结构煤(强烈破坏煤);Ⅳ类—粉粒结构煤(粉碎煤);Ⅴ类—糜棱结构煤(全粉煤)。
    下载: 导出CSV
  • [1]

    HARGRAVES A J, Instantaneous outbursts of coal and gas: A review & discussion[C]//Proc Aus IMM, 1983.

    [2]

    FARMER I W, POOLEY F D. A hypothesis to explain the occurrence of outbursts in coal, based on a study of West Wales outburst coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1967(4): 189–193. http://www.onacademic.com/detail/journal_1000033971465110_2975.html

    [3]

    SHEPHERD J, RIXON L K, GRIFFITHS L. Outbursts and geological structures in coal mines: A review[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1981, 18(4): 267–283. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-014890628191192X&originContentFamily=serial&_origin=article&_ts=1483828262&md5=3bf2ab12832e198588e8fd19e03f2860

    [4] 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1999.

    ZHOU Shining, LIN Baiquan. Theory of coal seam gas occurrence and flow[M]. Beijing: China Coal Industry Publishing House, 1999.

    [5] 张子敏. 瓦斯地质学[M]. 徐州: 中国矿业大学出版社, 2009.

    ZHANG Zimin. Gas Geology[M]. Xuzhou: China University of Mining and Technology Press, 2009.

    [6] 张祖银, 张子敏. 1∶200万中国煤层瓦斯地质图编制[M]. 西安: 西安地图出版社, 1992.

    ZHANG Zuyin, ZHANG Zimin. 1∶2 million coal seam gas geological map compilation in China[M]. Xi'an: Xi'an Cartographic Publishing House, 1992.

    [7] 袁崇孚. 构造煤和煤与瓦斯突出[J]. 煤炭科学技术, 1986, 13(1): 32–33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198601011.htm

    YUAN Chongfu. Structural coal and coal and gas outburst[J]. Coal Science and Technology, 1986, 13(1): 32–33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198601011.htm

    [8] 彭立世, 陈凯德. 顺层滑动构造与瓦斯突出机制[J]. 焦作矿业学院学报(自然科学版), 1988(3): 156–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB1988Z1016.htm

    PENG Lishi, CHEN Kaide. Bedding sliding structure and gas outburst mechanism[J]. Journal of Henan Polytechnic University(Natural Science), 1988(3): 156–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB1988Z1016.htm

    [9] 曹运兴, 彭立世. 顺煤断层的基本类型及其对瓦斯突出带的控制作用[J]. 煤炭学报, 1995, 20(4): 413–417. DOI: 10.3321/j.issn:0253-9993.1995.04.023

    CAO Yunxing, PENG Lishi. The basic types of coal faults and their control on gas outburst zones[J]. Journal of China Coal Society, 1995, 20(4): 413–417. DOI: 10.3321/j.issn:0253-9993.1995.04.023

    [10] 康继武, 杨文朝. 瓦斯突出煤层中构造群落的宏观特征研究: 论平顶山东矿区戊(9–10)煤层的构造重建[J]. 应用基础与工程科学学报, 1995, 3(1): 45–51. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX199501006.htm

    KANG Jiwu, YANG Wenchao. Study on the macro-features of tectonic communities in gas outburst coal seam: On the tectonic rebuild of No. 9-10 coal seam in the eastern Pingdingshan mining district, Henan Province[J]. Journal of Basic Science and Engineering, 1995, 3(1): 45–51. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX199501006.htm

    [11] 姜波, 秦勇. 变形煤结构演化机理及其地质意义[M]. 徐州: 中国矿业大学出版社, 1998.

    JIANG Bo, QIN Yong. Evolution mechanism of structures of deformed coals and its geological significance[M]. Xuzhou: China University of Mining and Technology Press, 1998.

    [12] 张玉贵, 张子敏, 曹运兴. 构造煤结构与瓦斯突出[J]. 煤炭学报, 2007, 32(3): 281–284. DOI: 10.3321/j.issn:0253-9993.2007.03.013

    ZHANG Yugui, ZHANG Zimin, CAO Yunxing. Deformed-coal structure and control to coal-gas outburst[J]. Journal of China Coal Society, 2007, 32(3): 281–284. DOI: 10.3321/j.issn:0253-9993.2007.03.013

    [13] 琚宜文, 王桂梁. 煤层流变及其与煤矿瓦斯突出的关系: 以淮北海孜煤矿为例[J]. 地质论评, 2002, 48(1): 96–105. DOI: 10.3321/j.issn:0371-5736.2002.01.015

    JU Yiwen, WANG Guiliang. Rheology of coal seams and their relation with gas outburst: A case study of the Haizi Coal Mine, Huaibei Coalfield[J]. Geological Review, 2002, 48(1): 96–105. DOI: 10.3321/j.issn:0371-5736.2002.01.015

    [14] 韩军, 张宏伟, 张普田. 推覆构造的动力学特征及其对瓦斯突出的作用机制[J]. 煤炭学报, 2012, 37(2): 247–252. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201202016.htm

    HAN Jun, ZHANG Hongwei, ZHANG Putian. Nappe structure's kinetic features and mechanisms of action to coal and gas outburst[J]. Journal of China Coal Society, 2012, 37(2): 247–252. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201202016.htm

    [15] 高魁, 刘泽功, 刘健, 等. 构造软煤的物理力学特性及其对煤与瓦斯突出的影响[J]. 中国安全科学学报, 2013, 23(2): 129–133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201302026.htm

    GAO Kui, LIU Zegong, LIU Jian, et al. Physical and mechanical characteristics of tectonic soft coal and their effects on coal and gas outburst[J]. China Safety Science Journal, 2013, 23(2): 129–133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201302026.htm

    [16] 于不凡. 煤和瓦斯突出与地应力的关系[J]. 工业安全与防尘, 1985(3): 2–6. http://www.cnki.com.cn/Article/CJFDTotal-GYAF198503001.htm

    YU Bufan. The relationship between coal and gas outburst and ground stress[J]. Industrial Safety and Environmental Protection, 1985(3): 2–6. http://www.cnki.com.cn/Article/CJFDTotal-GYAF198503001.htm

    [17] 徐凤银, 朱兴珊, 王桂梁, 等. 芙蓉矿区古构造应力场及其对煤与瓦斯突出控制的定量化研究[J]. 地质科学, 1995, 30(1): 71–84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX501.008.htm

    XU Fengyin, ZHU Xingshan, WANG Guiliang, et al. The quantitative research on the paleotectonic stress field and its control to coal and gas outburst[J]. Scientia Geologica Sinica, 1995, 30(1): 71–84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX501.008.htm

    [18] 张宏伟. 地质动力区划方法在煤与瓦斯突出区域预测中的应用[J]. 岩石力学与工程学报, 2003, 22(4): 621–624. DOI: 10.3321/j.issn:1000-6915.2003.04.022

    ZHANG Hongwei. Application of geo-dynamic division method in prediction of coal and gas outburst region[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 621–624. DOI: 10.3321/j.issn:1000-6915.2003.04.022

    [19] 张春华, 刘泽功, 刘健, 等. 封闭型地质构造诱发煤与瓦斯突出的力学特性模拟试验[J]. 中国矿业大学学报, 2013, 42(4): 554–559. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304008.htm

    ZHANG Chunhua, LIU Zegong, LIU Jian, et al. Physical scale modeling of mechanical characteristics of outburst induced by closed geological structure[J]. Journal of China University of Mining & Technology, 2013, 42(4): 554–559. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304008.htm

    [20]

    JIA Tianrang, FENG Zhendong, WEI Guoying, et al. Shear deformation of fold structures in coal measure strata and coal-gas outbursts: Constraint and mechanism[J]. Energy Exploration & Exploitation, 2018, 36(2): 185–203. http://www.onacademic.com/detail/journal_1000040117571910_344c.html

    [21]

    YAN Jiangwei, JIA Tianrang, WEI Guoying, et al. In-situ stress partition and its implication on coalbed methane occurrence in the basin-mountain transition zone: A case study of the Pingdingshan coalfield, China[J]. Sādhanā, 2020, 45(23): 2–6. DOI: 10.1007/s12046-020-1278-7

    [22] 朱兴珊, 徐凤银. 论构造应力场及其演化对煤和瓦斯突出的主控作用[J]. 煤炭学报, 1994, 19(3): 303–314. http://qikan.cqvip.com/Qikan/Article/Detail?id=1431846

    ZHU Xingshan, XU Fengyin. The controlling effect of tectonic stress field and its evolution on coal and gas outburst[J]. Journal of China Coal Society, 1994, 19(3): 303–314. http://qikan.cqvip.com/Qikan/Article/Detail?id=1431846

    [23] 朱兴珊, 徐凤银, 李权一. 南桐矿区破坏煤发育特征及其影响因素[J]. 煤田地质与勘探, 1996, 24(2): 28–32. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0a200532-74cd-4b87-95b6-3d5d233e60a6

    ZHU Xingshan, XU Fengyin, LI Quanyi. Development characteristics and influencing factors of damaged coal in Nantong mining area[J]. Coal Geology & Exploration, 1996, 24(2): 28–32. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0a200532-74cd-4b87-95b6-3d5d233e60a6

    [24] 张子敏, 张玉贵. 大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J]. 煤炭学报, 2005, 30(2): 137–140. DOI: 10.3321/j.issn:0253-9993.2005.02.001

    ZHANG Zimin, ZHANG Yugui. Investigation into coal-gas outburst occurred in Daping Coalmine, by using theories of gas-geology[J]. Journal of China Coal Society, 2005, 30(2): 137–140. DOI: 10.3321/j.issn:0253-9993.2005.02.001

    [25] 张子敏, 张玉贵. 瓦斯地质规律与瓦斯预测[M]. 北京: 煤炭工业出版社, 2005.

    ZHANG Zimin, ZHANG Yugui. Gas geological law and gas prediction[M]. Beijing: China Coal Industry Publishing House, 2005.

    [26] 张子敏, 张玉贵, 卫修君, 等. 编制煤矿三级瓦斯地质图[M]. 北京: 煤炭工业出版社, 2007.

    ZHANG Zimin, ZHANG Yugui, WEI Xiujun, et al. Compilation of three-level gas geological map of coal mine[M]. Beijing: China Coal Industry Publishing House, 2007.

    [27] 宋岩, 赵孟军, 柳少波, 等. 构造演化对煤层气富集程度的影响[J]. 科学通报, 2005, 50(增刊1): 1–5. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2005S1001.htm

    SONG Yan, ZHAO Mengjun, LIU Shaobo, et al. The influence of structural evolution on the enrichment degree of coalbed methane[J]. Chinese Science Bulletin, 2005, 50(Sup. 1): 1–5. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2005S1001.htm

    [28] 韩军, 张宏伟, 宋卫华, 等. 构造凹地煤与瓦斯突出发生机制及其危险性评估[J]. 煤炭学报, 2011, 36(增刊1): 108–113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2011S1023.htm

    HAN Jun, ZHANG Hongwei, SONG Weihua, et al. Coal and gas outburst mechanism and risk analysis of tectonic concave[J]. Journal of China Coal Society, 2011, 36(Sup. 1): 108–113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2011S1023.htm

    [29] 张子敏, 吴吟. 中国煤矿瓦斯地质规律及编图[M]. 徐州: 中国矿业大学出版社, 2014.

    ZHANG Zimin, WU Yin. Chinese coalmine gas geological law and mapping[M]. Xuzhou: China University of Mining and Technology Press, 2014.

    [30] 张子敏, 吴吟. 中国煤矿瓦斯赋存构造逐级控制规律与分区划分[J]. 地学前缘, 2013, 20(2): 237–245. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201302033.htm

    ZHANG Zimin, WU Yin. Tectonic-level-control rule and area-dividing of coalmine gas occurrence in China[J]. Earth Science Frontiers, 2013, 20(2): 237–245. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201302033.htm

    [31] 李三忠, 索艳慧, 戴黎明, 等. 渤海湾盆地形成与华北克拉通破坏[J]. 地学前缘, 2010, 17(4): 64–89. http://qikan.cqvip.com/Qikan/Article/Detail?id=34340266

    LI Sanzhong, SUO Yanhui, DAI Liming. Development of the Bohai Bay Basin and destruction of the North China Craton[J]. Earth Science Frontiers, 2010, 17(4): 64–89. http://qikan.cqvip.com/Qikan/Article/Detail?id=34340266

    [32] 曹代勇, 宁树正, 郭爱军, 等. 中国煤田构造格局与构造控煤作用[M]. 北京: 科学出版社, 2018.

    CAO Daiyong, NING Shuzheng, GUO Aijun, et al. Tectonic framework of coalfields and tectonic control of coalseams in China[M]. Beijing: Science Press, 2018.

    [33] 琚宜文, 卫明明, 薛传东. 华北盆山演化对深部煤与煤层气赋存的制约[J]. 中国矿业大学学报, 2011, 40(3): 390–398. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201103012.htm

    JU Yiwen, WEI Mingming, XUE Chuandong. Control of basin-mountain evolution on the occurrence of deep coal and coalbed methane in North China[J]. Journal of China University of Mining & Technology, 2011, 40(3): 390–398. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201103012.htm

    [34] 王双明. 鄂尔多斯盆地构造演化和控煤构造作用[J]. 地质通报, 2011, 30(4): 544–552. DOI: 10.3969/j.issn.1671-2552.2011.04.011

    WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China, 2011, 30(4): 544–552. DOI: 10.3969/j.issn.1671-2552.2011.04.011

    [35] 琚宜文, 王桂粱, 卫明明, 等. 中新生代以来华北能源盆地与造山带耦合演化过程及其特征[J]. 中国煤炭地质, 2014, 26(8): 15–19. DOI: 10.3969/j.issn.1674-1803.2014.08.04

    JU Yiwen, WANG Guiliang, WEI Mingming, et al. North China energy basin and orogenic belt coupled evolution process and its characteristics since Meso-Cenozoic[J]. Coal Geology of China, 2014, 26(8): 15–19. DOI: 10.3969/j.issn.1674-1803.2014.08.04

    [36] 王桂梁, 琚宜文, 郑孟林, 等. 中国北部能源盆地构造[M]. 徐州: 中国矿业大学出版社, 2007.

    WANG Guiliang, JU Yiwen, ZHENG Menglin, et al. Energy basin structure in North China[M]. Xuzhou: China University of Mining and Technology Press, 2007.

    [37] 王佟, 夏玉成, 韦博, 等. 新疆侏罗纪煤田构造样式及其控煤效应[J]. 煤炭学报, 2017, 42(2): 436–443.

    WANG Tong, XIA Yucheng, WEI Bo, et al. Structural styles and their control effect on Jurassic coalfield in Xinjiang[J]. Journal of China Coal Society, 2017, 42(2): 436–443.

    [38] 王亮, 郑思文, 赵伟, 等. 淮北煤田煤与瓦斯突出灾害差异性和控制因素研究[J]. 煤炭科学技术, 2020, 48(10): 75–83. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202010008.htm

    WANG Liang, ZHENG Siwen, ZHAO Wei, et al. Study on difference and control factors of coal and gas outburst disasters in Huaibei Coalfield[J]. Coal Science and Technology, 2020, 48(10): 75–83. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202010008.htm

    [39] 郭德勇, 韩德馨. 地质构造控制煤和瓦斯突出作用类型研究[J]. 煤炭学报, 1998, 23(4): 337–341. http://www.cnki.com.cn/Article/CJFDTotal-MTXB804.000.htm

    GUO Deyong, HAN Dexin. Research on the types of geological tectonic controlling coal-gas outbursts[J]. Journal of China Coal Society, 1998, 23(4): 337–341. http://www.cnki.com.cn/Article/CJFDTotal-MTXB804.000.htm

    [40] 童玉明, 陈胜早, 王伏泉, 等. 中国成煤大地构造[M]. 北京: 科学出版社, 1994.

    TONG Yuming, CHEN Shengzao, WANG Fuquan, et al. China coal-forming regional structure[M]. Beijing: Science Press, 1994.

    [41] 陈善庆. 鄂、湘、粤、桂二叠纪构造煤特征及成因分析[J]. 煤炭学报, 1989, 16(4): 2–10. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198904000.htm

    CHEN Shanqing. Characteristics of tectonically deformed Permian coal in Hubei, Hunan, Guangdong and Guangxi Provinces and analysis of its origin[J]. Journal of China Coal Society, 1989, 16(4): 2–10. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198904000.htm

    [42] 侯泉林, 张子敏. 关于"糜棱煤"概念之探讨[J]. 焦作矿业学院学报, 1990(2): 21–26. http://qikan.cqvip.com/Qikan/Article/Detail?id=305243

    HOU Quanlin, ZHANG Zimin. The study of the concept of "mylon coal"[J]. Journal of Jiaozuo Mining Institute, 1990(2): 21–26. http://qikan.cqvip.com/Qikan/Article/Detail?id=305243

    [43] 李康, 钟大贲. 煤岩的显微构造特征及其与瓦斯突出的关系: 以南桐鱼田堡煤矿为例[J]. 地质学报, 1992, 66(2): 148–157. http://www.cnki.com.cn/article/cjfdtotal-dzxe199202004.htm

    LI Kang, ZHONG Daben. Microstructures of coal and their relation with gas outbursts: A case study of the Yutianbao Coal Mine, Nantong[J]. Acta Geologica Sinica, 1992, 66(2): 148–157. http://www.cnki.com.cn/article/cjfdtotal-dzxe199202004.htm

    [44] 曹代勇, 张守仁, 任德贻. 构造变形对煤化作用进程的影响: 以大别造山带北麓地区石炭纪含煤岩系为例[J]. 地质论评, 2002, 48(3): 313–317. DOI: 10.3321/j.issn:0371-5736.2002.03.013

    CAO Daiyong, ZHANG Shouren, REN Deyi. The influence of structural deformation on coalification: A case study of Carboniferous coal measures in the northern foothills of the Dabie orogenic belt[J]. Geological Review, 2002, 48(3): 313–317. DOI: 10.3321/j.issn:0371-5736.2002.03.013

    [45] 琚宜文, 姜波, 侯泉林, 等. 构造煤结构–成因新分类及其地质意义[J]. 煤炭学报, 2004, 29(5): 513–517. DOI: 10.3321/j.issn:0253-9993.2004.05.001

    JU Yiwen, JIANG Bo, HOU Quanlin, et al. The new structure-genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of China Coal Society, 2004, 29(5): 513–517. DOI: 10.3321/j.issn:0253-9993.2004.05.001

    [46] 琚宜文, 姜波, 王桂梁, 等. 构造煤结构及储层物性[M]. 徐州: 中国矿业大学出版社, 2005.

    JU Yiwen, JIANG Bo, WANG Guiliang, et al. Tectonic coal structure and reservoir physical properties[M]. Xuzhou: China University of Mining and Technology Press, 2005.

    [47] 王恩营, 易伟欣, 李云波. 华北板块构造煤分布及成因机制[M]. 北京: 科学出版社, 2015.

    WANG Enying, YI Weixin, LI Yunbo. The distribution and genetic mechanism of tectonic coal in North China plate[M]. Beijing: Science Press, 2015.

    [48] 李云波, 张腾飞, 宋党育, 等. 基于多重分形奇异性理论的瓦斯地质规律预测方法: 以淮南矿区潘一矿为例[J]. 煤炭学报, 2018, 43(12): 3436–3446. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812022.htm

    LI Yunbo, ZHANG Tengfei, SONG Dangyu, et al. Prediction method of methane geological law based on the multifractal singularity theory: An example from the Panyi Coalmine, Huainan coalfield, China[J]. Journal of China Coal Society, 2018, 43(12): 3436–3446. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812022.htm

图(4)  /  表(1)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  16
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-08-03
  • 网络出版日期:  2021-12-29
  • 发布日期:  2021-12-24

目录

/

返回文章
返回