基于煤层气井排采数据的储层含气量动态反演研究

马东民, 伋雨松, 陈跃, 郑超, 滕金祥, 马卓远, 肖嘉隆

马东民, 伋雨松, 陈跃, 郑超, 滕金祥, 马卓远, 肖嘉隆. 基于煤层气井排采数据的储层含气量动态反演研究[J]. 煤田地质与勘探, 2021, 49(6): 67-73. DOI: 10.3969/j.issn.1001-1986.2021.06.007
引用本文: 马东民, 伋雨松, 陈跃, 郑超, 滕金祥, 马卓远, 肖嘉隆. 基于煤层气井排采数据的储层含气量动态反演研究[J]. 煤田地质与勘探, 2021, 49(6): 67-73. DOI: 10.3969/j.issn.1001-1986.2021.06.007
MA Dongmin, JI Yusong, CHEN Yue, ZHENG Chao, TENG Jinxiang, MA Zhuoyuan, XIAO Jialong. CBM well drainage data-based dynamic inversion study of reservoir gas content[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 67-73. DOI: 10.3969/j.issn.1001-1986.2021.06.007
Citation: MA Dongmin, JI Yusong, CHEN Yue, ZHENG Chao, TENG Jinxiang, MA Zhuoyuan, XIAO Jialong. CBM well drainage data-based dynamic inversion study of reservoir gas content[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 67-73. DOI: 10.3969/j.issn.1001-1986.2021.06.007

 

基于煤层气井排采数据的储层含气量动态反演研究

基金项目: 

国家自然科学基金项目 41902175

山西省科技重大专项项目 20201101002

自然资源部煤炭资源勘查与综合利用重点实验室开放课题 KF2019-2

详细信息
    作者简介:

    马东民,1967年生,男,陕西合阳人,博士(后),教授,从事煤与煤层气地质教学与研究工作. E-mail:mdm6757@126.com

  • 中图分类号: P624.7

CBM well drainage data-based dynamic inversion study of reservoir gas content

  • 摘要: 煤储层含气量是煤层气开发的核心参数,但实测煤储层含气量与煤储层的真实含气量之间往往存在误差。基于窑街矿区海石湾井田煤层气井不同时段的产气量,以煤储层含气量“定体积”降低为基础,反演煤储层实时含气量,研究煤层气井排采过程煤储层实时含气量的变化规律。结果表明:煤储层含气量随排采时间呈线性下降趋势,不同步长煤层气井产气量与煤储层含气量降低幅度一致,遵循“定体积”产气特征,即煤层气单井产气量是煤基质“定体积”产出;煤层气井的产气量与含气量降低速率有关,而与煤储层原始含气量无关。煤储层为隔水层,水力压裂难以改变煤基微孔隙通道的结合水状态,CH4产出过程受水–煤界面作用控制,煤层气产出是“CH4·煤·水”三相界面传质作用的结果,水–煤界面作用中水的湍动提供并传递能量,激励块煤中CH4解吸与产出。
    Abstract: The gas content of coal reservoir is the core parameter of coalbed methane production. There is an error between the measured gas content and the real gas content of coal reservoir. In this paper, based on the gas production of Haishiwan coalbed methane wells in different periods and the decrease of the "constant volume" of the gas content of coal reservoirs, the real-time gas content of coal reservoirs is inverted, and the change rule of the real-time gas content in the process of coalbed methane well drainage is explored. The results show that: (1) The gas content of coal reservoir decreases linearly with the drainage time t. the gas production of different long coalbed methane wells is consistent with the decrease of coal reservoir gas content, and follows the characteristics of "constant volume" gas production, that is, the gas production of single coalbed methane well is the "constant volume" production of coal matrix; (2) The gas production of coalbed methane wells has nothing to do with the original gas content of coal reservoir, but is related to the reduction of gas content; (3) The coal reservoir is a water-resistant layer, and hydraulic fracturing is difficult to change the combined water state of coal-based micropore channels. The CH4 production process is controlled by the water-coal interface. Coalbed methane production is the result of mass transfer at the three-phase interface of "CH4, coal and water", in which water turbulence provides and transfers energy to stimulate the desorption and production of CH4 in block coal.
  • 图  1   窑街矿区地理位置[22]

    Fig.  1   Geographic location of Yaojie mining area[22]

    图  2   海石湾HSW05煤层气井群排采曲线

    Fig.  2   Coalbed methane drainage and production curves of well group HSW05 in Haishiwan

    图  3   不同原始含气量步长为1 d实时煤储层含气量变化曲线

    Fig.  3   Real-time gas content change in different original gas contents in 1 d step size

    图  4   不同原始含气量不同步长实时含气量变化曲线

    Fig.  4   Real-time gas content change in different original gas content in different step size

    表  1   HSW05不同煤层气井煤二层参数

    Table  1   Parameters of the second coal seam in different wells of well group HSW05

    井号 煤厚/m 压裂缝长设计/m 视密度ρ/(t·m–3) 产气煤体积V/m3
    HSW05-1D 3.50 120 1.4 158 256
    HSW05-2D 1.25 56 520
    HSW05-3V 17.20 777 715
    HSW05-4D 9.30 420 509
    HSW05-5D 22.10 999 274
    下载: 导出CSV

    表  2   HSW05井群不同排采阶段曲线斜率

    Table  2   Straight slope of HSW05 wells in different drainage stages

    井号 上升阶段 下降阶段
    HSW05-1D –0.001 8 –0.003 2
    HSW05-2D –0.011 6 –0.013 0
    HSW05-3V –0.000 1(缓慢) –0.001 6
    –0.001 2(快速)
    HSW05-4D –0.000 7 –0.001 9
    HSW05-5D –0.000 5(缓慢) –0.001 2
    –0.001 0(快速)
    下载: 导出CSV
  • [1] 秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报, 2021, 46(8): 2387-2399. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202108002.htm

    QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society, 2021, 46(8): 2387-2399. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202108002.htm

    [2] 吕玉民, 柳迎红, 陈桂华, 等. 沁水盆地南部煤层气水平井产能影响因素分析[J]. 煤炭科学技术, 2020, 48(10): 225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202010030.htm

    LYU Yumin, LIU Yinghong, CHEN Guihua, et al. Analysis of factors affecting productivity of CBM in horizontal wells in southern Qinshui Basin[J]. Coal Science and Technology, 2020, 48(10): 225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202010030.htm

    [3] 伊永祥, 唐书恒, 张松航, 等. 沁水盆地柿庄南区块煤层气井储层压降类型及排采控制分析[J]. 煤田地质与勘探, 2019, 47(5): 118-126. DOI: 10.3969/j.issn.1001-1986.2019.05.016

    YI Yongxiang, TANG Shuheng, ZHANG Songhang, et al. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. Coal Geology & Exploration, 2019, 47(5): 118-126. DOI: 10.3969/j.issn.1001-1986.2019.05.016

    [4] 赵兴龙. 延川南煤层气井合理配产及其排采控制[J]. 油气藏评价与开发, 2020, 10(3): 115-120.

    ZHAO Xinglong. Reasonable production allocation and drainage control of coalbed methane wells in South Yanchuan CBM field[J]. Reservoir Evaluation and Development, 2020, 10(3): 115-120.

    [5] 胡海洋, 赵凌云, 陈捷, 等. 发耳矿区煤储层敏感性对煤层气排采影响及控制对策[J]. 煤炭科学技术, 2020, 48(7): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007038.htm

    HU Haiyang, ZHAO Lingyun, CHEN Jie, et al. Influence of coal seam sensitivity on CBM drainage and control strategy in Fa'er mining area[J]. Coal Science and Technology, 2020, 48(7): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007038.htm

    [6]

    TAO Shu, TANG Dazhen, XU Hao, et al. Factors controlling high-yield coalbed methane vertical wells in the Fanzhuang Block, southern Qinshui Basin[J]. International Journal of Coal Geology, 2014, 134/135: 38-45. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0166516214002122&originContentFamily=serial&_origin=article&_ts=1464638678&md5=97d8469f47a1174ace709fd7105723aa

    [7] 余莉珠, 师伟, 姚晓莉, 等. 临汾区块深层煤层气水平井定量化排采控制技术[J]. 煤炭学报, 2018, 43(增刊2): 499-504.

    YU Lizhu, SHI Wei, YAO Xiaoli, et al. Quantitative control technology for deep coalbed methane horizontal wells in Linfen Block[J]. Journal of China Coal Society, 2018, 43(Sup. 2): 499-504.

    [8] 张遂安, 曹立虎, 杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报, 2014, 39(9): 1927-1931.

    ZHANG Sui'an, CAO Lihu, DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society, 2014, 39(9): 1927-1931.

    [9] 马东民, 王传涛, 夏玉成, 等. 大佛寺井田煤层气井压裂参数优化方案[J]. 西安科技大学学报, 2019, 39(2): 263-269.

    MA Dongmin, WANG Chuantao, XIA Yucheng, et al. Optimization program of fracturing parameters for coalbed methane wells in Dafosi Minefield[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 263-269.

    [10]

    MU Yongliang, FAN Nan, WANG Jiren. CBM recovery technology characterized by docking ground multi-branch horizontal wells with underground boreholes[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019: 1-15. DOI: 10.1080/15567036.2019.1630519?scroll=top

    [11] 李东, 张学梅, 郝静远, 等. 基于吸附验证的煤层气含量测定的可行性研究[J]. 煤炭科学技术, 2018, 46(9): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809025.htm

    LI Dong, ZHANG Xuemei, HAO Jingyuan, et al. Feasibility study of coalbed methane content test based on adsorption approved[J]. Coal Science and Technology, 2018, 46(9): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809025.htm

    [12] 谢向向, 张玉贵, 姜家钰, 等. 钻井液对煤心煤层气解吸损失量的影响[J]. 煤田地质与勘探, 2015, 43(1): 30-34.

    XIE Xiangxiang, ZHANG Yugui, JIANG Jiayu, et al. The influence of drilling fluid on coal bed methane desorption loss of coal core[J]. Coal Geology & Exploration, 2015, 43(1): 30-34.

    [13]

    LI Junqian, LU Shuangfang, ZHANG Pengfei, et al. Estimation of gas-in-place content in coal and shale reservoirs: A process analysis method and its preliminary application[J]. Fuel, 2020, 259: 116266. http://www.sciencedirect.com/science/article/pii/S0016236119316205

    [14] 傅雪海, 张小东, 韦重韬. 煤层含气量的测试、模拟与预测研究进展[J]. 中国矿业大学学报, 2021, 50(1): 13-31.

    FU Xuehai, ZHANG Xiaodong, WEI Chongtao. Review of research on testing, simulation and prediction of coalbed methane content[J]. Journal of China University of Mining & Technology, 2021, 50(1): 13-31.

    [15] 刘刚, 赵谦平, 高潮, 等. 提高页岩含气量测试中损失气量计算精度的解吸临界时间点法[J]. 天然气工业, 2019, 39(2): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201902013.htm

    LIU Gang, ZHAO Qianping, GAO Chao, et al. A critical desorption time method to improve the calculation accuracy of gas loss in shale gas content testing[J]. Natural Gas Industry, 2019, 39(2): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201902013.htm

    [16] 李泽辰, 杜文凤, 胡进奎, 等. 鄂尔多斯盆地临兴区块测井含气量解释方法[J]. 煤炭学报, 2018, 43(增刊2): 490-498. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2018.htm

    LI Zechen, DU Wenfeng, HU Jinkui, et al. Interpretation method of gas content in logging of Linxing block in Ordos Basin[J]. Journal of China Coal Society, 2018, 43(Sup. 2): 490-498. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2018.htm

    [17] 孙四清, 张群, 郑凯歌, 等. 地面井煤层气含量精准测试密闭取心技术及设备[J]. 煤炭学报, 2020, 45(7): 2523-2530. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007021.htm

    SUN Siqing, ZHANG Qun, ZHENG Kaige, et al. Technology and equipment of sealed coring for accurate determination of coalbed gas content in ground well[J]. Journal of China Coal Society, 2020, 45(7): 2523-2530. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007021.htm

    [18] 陈刚, 秦勇, 胡宗全, 等. 不同煤阶深煤层含气量差异及其变化规律[J]. 高校地质学报, 2015, 21(2): 274-279.

    CHEN Gang, QIN Yong, HU Zongquan, et al. Variations of gas content in deep coalbeds of different coal ranks[J]. Geological Journal of China Universities, 2015, 21(2): 274-279.

    [19] 李树刚, 白杨, 林海飞, 等. N2/CO2注入压力对含瓦斯煤岩中甲烷解吸的影响[J]. 天然气工业, 2021, 41(3): 80-89.

    LI Shugang, BAI Yang, LIN Haifei, et al. Effect of N2/CO2 injection pressure on CH4 desorption in gas-bearing coal rock[J]. Natural Gas Industry, 2021, 41(3): 80-89.

    [20] 程轶妍, 陈贞龙, 李松, 等. 黔西比德-三塘向斜煤层气藏特征及甜点区段[J]. 地质通报, 2021, 40(7): 1140-1148.

    CHENG Yiyan, CHEN Zhenlong, LI Song, et al. Characteristics of coalbed methane accumulation in Bide-Santang syncline, western Guizhou and favorable sector[J]. Geological Bulletin of China, 2021, 40(7): 1140-1148.

    [21] 韩文龙, 王延斌, 刘度, 等. 煤层气直井产气曲线特征及其与储层条件匹配性[J]. 煤田地质与勘探, 2019, 47(3): 97-104. DOI: 10.3969/j.issn.1001-1986.2019.03.016

    HAN Wenlong, WANG Yanbin, LIU Du, et al. The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells[J]. Coal Geology & Exploration, 2019, 47(3): 97-104. DOI: 10.3969/j.issn.1001-1986.2019.03.016

    [22] 李伟. 海石湾井田CO2成藏演化机制及防治技术研究[D]. 徐州: 中国矿业大学, 2011.

    LI Wei. Mechanism of CO2 pools formation and CO2 control technology of Haishiwan coalfield[D]. Xuzhou: China University of Mining and Technology, 2011.

    [23] 张群, 范章群. 煤层气损失气含量模拟试验及结果分析[J]. 煤炭学报, 2019, 34(12): 1649-1654. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200912014.htm

    ZHANG Qun, FAN Zhangqun. Simulation experiment and result analysis on lost gas content of coalbed methane[J]. Journal of China Coal Society, 2019, 34(12): 1649-1654. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200912014.htm

图(4)  /  表(2)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  25
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 修回日期:  2021-11-04
  • 网络出版日期:  2021-12-29
  • 发布日期:  2021-12-24

目录

    /

    返回文章
    返回