Application of surface nuclear magnetic resonance technology in detecting water abundance in concealed burnt zone
-
摘要: 煤层隐伏火烧区上覆基岩复合含水层(包括风化基岩和烧变岩含水层)是煤层开采的主要威胁之一, 明确隐伏火烧区的富水性对矿井水害防治具有重要意义。基于此, 以发生过较大突水事故的柠条塔煤矿为研究对象, 利用地面核磁共振(SNMR)技术开展隐伏火烧区含水层富水性探测并对其进行分析和验证。结果表明, 隐伏火烧区共有2个含水层位, 分别为第四系松散砂层含水层和1-2 上煤上覆基岩含水层; 第四系砂层含水层富水性受地表地形及其下隔水层顶部起伏形态影响水平变化较大; 1-2 上煤上覆基岩含水层富水性总体西南较低、北东较高, 该含水层厚度9~30 m, 局部相对较厚, 推测为1-2 上煤火烧区风化基岩和烧变岩含水层的叠加反映; 研究区内1-2 上煤上覆基岩含水层总体呈现出西部及中部偏东南区域富水性相对较大, 其余区域富水性相对较小。利用SNMR得到的含水层富水程度与探放水孔及水文孔的涌水量结果大致相同, 表明该方法的勘探结果相对可靠, 可用于隐伏火烧区富水性的探测。Abstract: The overlying bedrock composite aquifer(including weathered bedrock and burnt rock aquifer) in the concealed burnt zone of coal seams is one of the main threats to coal mining. It is of great significance to clarify the water enrichment of the concealed burnt zone for the prevention and control of coal mine water hazards. Ningtiaota Coal Mine, which has experienced a large water inrush accident, was used as the research object, and the Surface Nuclear Magnetic Resonance(SNMR) was used to detect the water enrichment of the aquifer in the concealed burnt area. The results show that there are two aquifers in the concealed burnt zone, namely Quaternary loose sand aquifer and 1-2 coal overlying bedrock aquifer. The water enrichment of the Quaternary sand aquifer is affected by the topography of the surface and the top undulating shape of the lower aquifer, and the level changes greatly. The water content of the bedrock aquifer overlying 1-2 coal is generally lower in the southwest and higher in the northeast. The thickness of the aquifer is 9-30 m, relatively thicker parts, which is presumed to be the superimposed reflection of weathered bedrock and burnt rock aquifer in the burnt area. In the study area, the overlying bedrock aquifer of 1-2 coal generally shows relatively larger water quantity in the western and central southeast regions and relatively weaker water abundance. The conclusions obtained by using SNMR are roughly the same as the results of water inflows from water detection holes and hydrological holes, which indicates that the exploration results of this method are relatively reliable and can be used for the detection of water enrichment in hidden burnt areas.
-
-
表 1 S1233工作面井下探放水钻孔涌水量
Table 1 Water gushing by underground water exploration and drilling in working face S1233
编号 孔号 孔深/
m涌水量/
(m3·h-1)编号 孔号 孔深/
m涌水量/
(m3·h-1)1 Y3-1 134 27.7 7 X7-1 84 13 Y3-2 127 14.4 X7-2 82.5 10 Y3-3 132 20 X7-3 81.5 18 2 X4-1 127 30 X7-4 66 6 X4-2 123 16 8 X8-1 142 54 X4-3 130 95 X8-2 136 27 X4-4 129 30 X8-3 93 130 3 F1 127.5 31 X8-4 89 108 F2 102 25 9 X9-1 126 50.4 F3 108 48 X9-2 120 45.8 F4 126 51 X9-3 120 77.1 4 F5 129 77 X9-4 128 90 F6 111 24 10 X10-1 123 24 F7 109 25 X10-2 120 40 F8 123 23 X10-3 125 20 5 X5-1 129 13 X10-4 126 144 X5-2 123 18 11 X11-1 125 33 X5-3 126 46 X11-2 122 14 X5-4 138 56 X11-3 123 35 6 X6-1 121 15 X11-4 133 58 X6-2 123 70 X6-3 97 25 X6-4 93 50 -
[1] 杜中宁, 党学亚, 卢娜. 陕北能源化工基地烧变岩的分布特征及水文地质意义[J]. 地质通报, 2008, 27(8): 1168–1172. DOI: 10.3969/j.issn.1671-2552.2008.08.011 DU Zhongning, DANG Xueya, LU Na. Distribution characteristics of burnt metamorphic rocks in the Northern Shaanxi Energy and Chemical Industry Base, China and their hydrogeological significance[J]. Geological Bulletin of China, 2008, 27(8): 1168–1172. DOI: 10.3969/j.issn.1671-2552.2008.08.011
[2] 侯恩科, 陈培亨. 神府煤田煤层自燃研究[J]. 西安矿业学院学报, 1993(2): 137–142. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB199302006.htm HOU Enke, CHEN Peiheng. Study on spontaneous combustion of coal seams in Shenfu coal field[J]. Journal of Xi'an Mining Institute, 1993(2): 137–142. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB199302006.htm
[3] 侯恩科, 童仁剑, 冯洁, 等. 烧变岩富水特征与采动水量损失预计[J]. 煤炭学报, 2017, 42(1): 175–182. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701024.htm HOU Enke, TONG Renjian, FENG Jie, et al. Water enrichment characteristics of burnt rock and prediction on water loss caused by coal mining[J]. Journal of China Coal Society, 2017, 42(1): 175–182. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701024.htm
[4] 侯恩科, 闫鑫, 郑永飞, 等. Bayes判别模型在风化基岩富水性预测中的应用[J]. 西安科技大学学报, 2019, 39(6): 942–949. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201906005.htm HOU Enke, YAN Xin, ZHENG Yongfei, et al. Application of Bayes discriminant model in prediction of water enrichment of weathered bedrock[J]. Journal of Xi'an University of Science and Technology, 2019, 39(6): 942–949. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201906005.htm
[5] 董震雨, 王双明. 采煤对陕北榆溪河流域地下水资源的影响分析: 以杭来湾煤矿开采区为例[J]. 干旱区资源与环境, 2017, 31(3): 185–190. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201703030.htm DONG Zhenyu, WANG Shuangming. Influence of coal exploitation on groundwater resources in Yuxi river valley of northern Shaanxi[J]. Journal of Arid Land Resources and Environment, 2017, 31(3): 185–190. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201703030.htm
[6] 张志祥, 张永波, 付兴涛, 等. 煤矿开采对地下水破坏机理及其影响因素研究[J]. 煤炭技术, 2016, 35(2): 211–213. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201602083.htm ZHANG Zhixiang, ZHANG Yongbo, FU Xingtao, et al. Study of destruction mechanism of coal mining on groundwater and its influencing factors[J]. Coal Technology, 2016, 35(2): 211–213. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201602083.htm
[7] 张渝, 胡社荣, 彭纪超, 等. 中国北方煤层自燃产物分类及宏观模型[J]. 煤炭学报, 2016, 41(7): 1798–1805. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607026.htm ZHANG Yu, HU Sherong, PENG Jichao, et al. Metamorphic products of coal combustion and its macroscopic models in North China[J]. Journal of China Coal Society, 2016, 41(7): 1798–1805. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607026.htm
[8] 黄雷, 刘池洋. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征[J]. 地质学报, 2014, 88(9): 1753–1761. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409011.htm HUANG Lei, LIU Chiyang. Products of combustion of the Yanan Formation coal seam and their characteristics in the northeastern Ordos Basin[J]. Acta Geologica Sinica, 2014, 88(9): 1753–1761. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409011.htm
[9] 李峰, 刘鸿福, 张新军, 等. 基于分形理论确定地下煤层自燃火区范围[J]. 煤田地质与勘探, 2013, 41(3): 15–17. DOI: 10.3969/j.issn.1001-1986.2013.03.004 LI Feng, LIU Hongfu, ZHANG Xinjun, et al. Determination of spontaneous combustion extent in coal seams on the basis of the fractal theory[J]. Coal Geology & Exploration, 2013, 41(3): 15–17. DOI: 10.3969/j.issn.1001-1986.2013.03.004
[10] 花育才, 孟红星, 孙耀峰. 磁法和瞬变电磁法探测煤层火烧区边界及富水性[J]. 中国煤炭地质, 2012, 24(8): 80–84. DOI: 10.3969/j.issn.1674-1803.2012.08.18 HUA Yucai, MENG Hongxing, SUN Yaofeng. Coal seam burning area boundary and water yield property detection through magnetic method and transient electro-magnetic method(TEM)[J]. Coal Geology of China, 2012, 24(8): 80–84. DOI: 10.3969/j.issn.1674-1803.2012.08.18
[11] 秦守萍, 宋建华, 白述超, 等. 高精度磁法在伊昭井田隐伏火烧区探测中的应用[J]. 山东国土资源, 2017, 33(10): 57–61. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201710011.htm QIN Shouping, SONG Jianhua, BAI Shuchao, et al. Application of high precision magnetic survey for detdcting concealed burning area in Yizhao coal well[J]. Shandong Land and Resources, 2017, 33(10): 57–61. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201710011.htm
[12] 张振勇. TEM技术在岩层富水性探测中的应用[J]. 煤田地质与勘探, 2015, 43(6): 109–113. DOI: 10.3969/j.issn.1001-1986.2015.06.023 ZHANG Zhenyong. Application of TEM technique in detecting the water enrichment of strata[J]. Coal Geology & Exploration, 2015, 43(6): 109–113. DOI: 10.3969/j.issn.1001-1986.2015.06.023
[13] 刘大为, 刘天佑, 董建华. 小波多尺度分析在煤田火烧区磁法探测中的应用[J]. 煤田地质与勘探, 2005, 33(6): 61–63. DOI: 10.3969/j.issn.1001-1986.2005.06.018 LIU Dawei, LIU Tianyou, DONG Jianhua. Application of wavelet multi-scale analysis in magnetic prospecting of the burnt coal area[J]. Coal Geology and Exploration, 2005, 33(6): 61–63. DOI: 10.3969/j.issn.1001-1986.2005.06.018
[14] 宋业杰, 甘志超. 榆神矿区烧变岩水害防治技术[J]. 煤矿安全, 2019, 50(8): 92–96. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201908021.htm SONG Yejie, GAN Zhichao. Water hazard treatment for burnt rock aquifer in Yushen mining area[J]. Safety in Coal Mines, 2019, 50(8): 92–96. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201908021.htm
[15] 王逗. 核磁共振原理及其应用[J]. 现代物理知识, 2005(5): 50–51. https://www.cnki.com.cn/Article/CJFDTOTAL-XDWZ200505014.htm WANG Dou. Principle and application of nuclear magnetic resonance[J]. Modern Physics, 2005(5): 50–51. https://www.cnki.com.cn/Article/CJFDTOTAL-XDWZ200505014.htm
[16] WEICHMAN P B, LAVELY E M, RITZWOLLER M H. Surface nuclear magnetic resonance imaging of large system[J]. Physical Review Letters, 1999, 82(20): 4102–4105. DOI: 10.1103/PhysRevLett.82.4102
[17] 邓靖武, 潘玉玲, 熊玉珍. 探查地下水的新方法: 地面核磁共振找水方法的应用研究[J]. 现代地质, 2004, 18(1): 121–126. DOI: 10.3969/j.issn.1000-8527.2004.01.018 DENG Jingwu, PAN Yuling, XIONG Yuzhen. Applied research of a new method for detecting groundwater: SNMR detection groundwater method[J]. Geoscience, 2004, 18(1): 121–126. DOI: 10.3969/j.issn.1000-8527.2004.01.018
[18] FITTERMAN D V, MARK T. Stewart transient electromagnetic sounding for groundwater[J]. Geophysics, 1986, 51(4): 995–1005. DOI: 10.1190/1.1442158
[19] 李振宇, 潘玉玲, 张兵, 等. 利用核磁共振方法研究水文地质问题及应用实例[J]. 水文地质工程地质, 2003(4): 50–54. DOI: 10.3969/j.issn.1000-3665.2003.04.011 LI Zhenyu, PAN Yuling, ZHANG Bing, et al. Using NMR method research the hydrogeology problems and practical examples[J]. Hydrogeology & Engineering Geology, 2003(4): 50–54. DOI: 10.3969/j.issn.1000-3665.2003.04.011
[20] 孙淑琴, 林君, 张庆文, 等. 氢质子弛豫过程[J]. 物探与化探, 2005, 29(2): 153–156. DOI: 10.3969/j.issn.1000-8918.2005.02.016 SUN Shuqin, LIN Jun, ZHANG Qingwen, et al. The investigation of hydrogen macroscopic nuclear relaxation[J]. Geophysical & Geochemical Exploration, 2005, 29(2): 153–156. DOI: 10.3969/j.issn.1000-8918.2005.02.016
[21] 王光海, 李高明. 用核磁共振测井确定渗透率的原理和方法分析[J]. 测井技术, 2001, 25(2): 101–104. DOI: 10.3969/j.issn.1004-1338.2001.02.004 WANG Guanghai, LI Gaoming. On method and principle of determining permeability with NMR[J]. Well Logging Technology, 2001, 25(2): 101–104. DOI: 10.3969/j.issn.1004-1338.2001.02.004
[22] 贺超. 核磁共振成像系统原理及MR图像研究[J]. 云南大学学报(自然科学版), 2010, 32(增刊1): 245–248. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ2010S1056.htm HE Chao. The study of principle of nuclear magnetic resonance imaging and MR image[J]. Journal of Yunnan University(Natural Sciences Edition), 2010, 32(Sup. 1): 245–248. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ2010S1056.htm
-
期刊类型引用(11)
1. 侯恩科,吴家镁,杨帆,张池. 基于鲸鱼优化算法-支持向量机判别模型的风化基岩富水性评价:以神府煤田张家峁煤矿为例. 科学技术与工程. 2025(01): 119-127 . 百度学术
2. 王海. 隐伏火烧区烧变岩含水层水害治理技术研究. 煤田地质与勘探. 2024(05): 88-97 . 本站查看
3. 詹林,潘剑伟,高健,张成丽,杨晨,钱伦,槐玉鹿. 基于局部加密的非结构化网格SNMR方法二维Occam反演研究. 地球物理学进展. 2024(03): 1089-1101 . 百度学术
4. 薛建坤. 新疆阿艾矿区烧变岩水害特征及防治技术. 煤炭工程. 2024(11): 90-95 . 百度学术
5. 侯恩科,杨斯亮,苗彦平,车晓阳,杨磊,路波,谢晓深,王慧德,党冰. 基于Bayes判别分析模型的风化基岩富水性预测. 煤矿安全. 2023(01): 180-187 . 百度学术
6. 杨月堂. 煤矿顶部隔水性能多尺度评价. 能源与环保. 2023(02): 268-274 . 百度学术
7. 郭飞,侯克鹏,钟晓勇,陈俊彬,汪云川. 核磁共振技术在露天矿山地下水勘查中的应用. 中国矿业. 2023(05): 146-152+159 . 百度学术
8. 黄忠正,赵宝峰. 复合砂岩含水层下掘进巷道顶板富水异常区探查技术. 煤炭技术. 2023(07): 108-111 . 百度学术
9. 郭源. 地空电磁—核磁共振联测方法在地层富水性探测中的应用与研究. 山西煤炭. 2023(02): 89-95 . 百度学术
10. 吕振猛,孟凡贞,吕文茂,李梁宁. 改进的富水性预测评价方法. 煤炭技术. 2023(09): 152-155 . 百度学术
11. 赵宝峰,黄忠正,宗伟琴. 宁东煤田鸳鸯湖矿区煤层顶板水害防控技术与应用宁东煤田鸳鸯湖矿区煤层顶板水害防控技术与应用. 中国煤炭. 2022(03): 23-29 . 百度学术
其他类型引用(4)