矿井水深层回灌过程量质耦合模拟分析

赵春虎, 杨建, 王世东, 周建军, 许峰, 刘基

赵春虎, 杨建, 王世东, 周建军, 许峰, 刘基. 矿井水深层回灌过程量质耦合模拟分析[J]. 煤田地质与勘探, 2021, 49(5): 36-44. DOI: 10.3969/j.issn.1001-1986.2021.05.004
引用本文: 赵春虎, 杨建, 王世东, 周建军, 许峰, 刘基. 矿井水深层回灌过程量质耦合模拟分析[J]. 煤田地质与勘探, 2021, 49(5): 36-44. DOI: 10.3969/j.issn.1001-1986.2021.05.004
ZHAO Chunhu, YANG Jian, WANG Shidong, ZHOU Jianjun, XU Feng, LIU Ji. Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 36-44. DOI: 10.3969/j.issn.1001-1986.2021.05.004
Citation: ZHAO Chunhu, YANG Jian, WANG Shidong, ZHOU Jianjun, XU Feng, LIU Ji. Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 36-44. DOI: 10.3969/j.issn.1001-1986.2021.05.004

 

矿井水深层回灌过程量质耦合模拟分析

基金项目: 

陕西省自然科学基础研究计划项目 2020JM-715

天地科技股份有限公司科技创新基金项目 2018-TD-MS069

天地科技股份有限公司科技创新基金项目 2018-TD-QN052

详细信息
    作者简介:

    赵春虎,1981年生,男,陕西扶风人,博士,研究员,从事矿山水害防治与矿区水环境保护研究. E-mail: zhaochunhu@cctegxian.com

  • 中图分类号: TD32

Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water

  • 摘要: 矿井水深井回灌是矿井水“转移存储”处理的主要形式,根据鄂尔多斯盆地煤矿区地质和矿井水特征,从回灌目的层地下水与矿井水的匹配性、上下岩层的隔水性、回灌层的渗透性以及封闭性角度提出了矿井水回灌目的层选取依据。并以地下水达西定律和Dupuit理论为基础,建立极坐标系完整注水井稳定流数学模型,得出在稳定注水条件下,回灌量与注水层渗透系数、厚度、回灌压力、水位埋深以及回灌井直径正相关,与影响半径负相关,与回灌层埋深无关。提出了矿井水深层回灌水动力和溶质运移耦合仿真模型构建方法,并以矿井水回灌试验案例为分析对象,模拟得出矿井水回灌过程中含水层水压形成以注水井为中心的“高位水丘”,且注水压力越大,回灌量增加较为明显,模型分析结果与现场试验结果基本一致。溶质运移范围形成以注水井为中心的“圆柱状”弥散形态,特征离子浓度沿回灌井两侧变化剧烈,回灌层特征离子浓度被迅速稀释,随着时间的延伸,弥散稀释范围增加相对较小,说明矿井水回灌对深部高浓度含水层地下水水化学影响程度不大,研究成果可为西部煤矿区矿井水高效回灌处理提供科学依据。
    Abstract: The deep well reinjection of mine water is a main form of "transfer storage" treatment of mine water. According to the geological and mine water characteristics of the coal mine area in Ordos Basin, the paper puts forward the basis for selecting the target layer of mine water reinjection from the perspective of good matching between groundwater and mine water in the target layer of reinjection, the water isolation of upper and lower strata, permeability and sealing of the reinjection layer. Based on Darcy's law of groundwater and Dupuit's theory, a mathematical model of steady flow of water injection well in polar coordinate system is established. It is concluded that under the condition of steady water injection, the reinjection quantity is positively correlated with the permeability coefficient, thickness, reinjection pressure, water level burial depth and reinjection well diameter of water injection layer, negatively correlated with the influence radius, and it has nothing to do with the burial depth of water injection layer. The construction method of coupling simulation model of groundwater dynamics and solute transfer in the process of deep mine water reinjection was put forward, and mine water reinjection test was taken as the analysis object. The simulation results show that the formation of water injection well is the "high water mound" in the process of high-pressure mine water reinjection; the higher the injection pressure is, the more obvious the reinjection amount is. The model analysis results are basically consistent with the field test results. Moreover, the solute transfer range forms a "cylindrical" dispersion shape centered on the water injection well; the ion concentration changes sharply along both sides of the reinjection well; the ion concentration of the aquifer is rapidly diluted. With the extension of time, the increase of dispersion dilution range is relatively small, which indicates that the relative recharge of mine water has little effect on groundwater chemistry of deep high concentration aquifer. The research results are expected to provide scientific basis for efficient recharge of mine water in western coal mining area.
  • 图  1   矿井水深层回灌

    Fig.  1   Schematic diagram of deep recharge of mine water

    图  2   矿井水深层回灌数值模型

    Fig.  2   Numerical model of deep recharge of mine water

    图  3   矿井水深层回灌过程中地下水动力演化

    Fig.  3   Simulation map of groundwater dynamic evolution in the process of deep groundwater recharge

    图  4   不同回灌压力下回灌层稳定水压力分布

    Fig.  4   Distribution of stable water pressure in reinjection layer under different reinjection pressures

    图  5   不同回灌压力下回灌水量随时间变化

    Fig.  5   Variation of reinjection amount with time under different reinjection pressures

    图  6   矿井水回灌过程中特征离子(Cl-)运移范围

    Fig.  6   Migration range of characteristic ions(Cl-) in the process of mine water recharge

    图  7   不同回灌压力下特征离子(Cl-)运移范围

    Fig.  7   Migration range of characteristic ions(Cl-) under different reinjection pressures

    表  1   模型主要参数

    Table  1   Main parameters of the numerical model

    参数 数值
    注水井直径/mm 216
    注水井深度/m 496
    回灌层初始水位埋深/m 200
    回灌层渗透系数K/(m·d-1) 0.011 3
    回灌层弹性给水度S/d-1 5×10-8
    回灌层横向弥散度αL/m 0.5[27]
    回灌层纵向弥散度αT/m 5[27]
    矿井水Cl-质量浓度/(mg·L-1) 70
    回灌层Cl-初始质量浓度C0/(mg·L-1) 40 000
    井口回灌压力p/MPa 6、7、8
    下载: 导出CSV

    表  2   案例矿井回灌实际试验成果和回灌层渗透系数

    Table  2   Results of reinjection test and calculation of permeability coefficient in case mine

    井口压力/MPa 稳定注水量/(m3·h-1) 反演渗透系数/(m·d-1)
    7.0~8.5 98.0 0.011 07
    6.2 68.2 0.013 44
    6.7 71.8 0.015 18
    下载: 导出CSV
  • [1] 范立民, 马雄德, 冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报, 2015, 40(8): 1711-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508001.htm

    FAN Limin, MA Xiongde, JI Ruijun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society, 2015, 40(8): 1711-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508001.htm

    [2] 武强, 赵苏启, 孙文洁, 等. 中国煤矿水文地质类型划分与特征分析[J]. 煤炭学报, 2013, 38(6): 901-905. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306003.htm

    WU Qiang, ZHAO Suqi, SUN Wenjie, et al. Classification of the hydrogeological type of coal mine and analysis of its characteristics in China[J]. Journal of China Coal Society, 2013, 38(6): 901-905. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306003.htm

    [3] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm

    SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm

    [4] 郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报. https://kns.cnki.net/kcms/detail/11.2190.td.20210317.1110.003.html

    HAO Chunming, ZHANG Wei, HE Ruimin, et al. Formation mechanisms for elevated fluoride in the mine water in Shendong coal-mining district[J]. Journal of China Coal Society. https://kns.cnki.net/kcms/detail/11.2190.td.20210317.1110.003.html

    [5] 张杰, 侯忠杰. 榆树湾浅埋煤层保水开采三带发展规律研究[J]. 湖南科技大学学报(自然科学版), 2006, 21(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200604002.htm

    ZHANG Jie, HOU Zhongjie. Research on the development law of three zones of water-conserving mining in shallow coal seam of Yushuwan[J]. Journal of Hunan University of Science and Technology(Natural Science Edition), 2006, 21(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200604002.htm

    [6]

    MA Liqiang, JIN Zhiyuan, LIANG Jimeng, et al. Simulation of water resource loss in short-distance coal seams disturbed by repeated mining[J]. Environmental Earth Sciences, 2015, 74(7): 5653-5662. DOI: 10.1007/s12665-015-4581-6

    [7] 彭小沾, 崔希民, 李春意, 等. 陕北浅煤层房柱式保水开采设计与实践[J]. 采矿与安全工程学报, 2008, 25(3): 301-304. DOI: 10.3969/j.issn.1673-3363.2008.03.011

    PENG Xiaozhan, CUI Ximin, LI Chunyi, et al. Design and practice of room & pillar water-preserved mining for shallowly buried coal seam in north of Shaanxi Province[J]. Journal of Mining & Safety Engineering, 2008, 25(3): 301 -304. DOI: 10.3969/j.issn.1673-3363.2008.03.011

    [8] 黄庆享, 张文忠. 浅埋煤层条带充填隔水岩组力学模型分析[J]. 煤炭学报, 2015, 40(5): 973-978. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201505002.htm

    HUANG Qingxiang, ZHANG Wenzhong. Mechanical model of water resisting strata group in shallow seam strip-filling mining[J]. Journal of China Coal Society, 2015, 40(5): 973-978. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201505002.htm

    [9] 马立强, 张东升, 王烁康, 等. "采充并行"式保水采煤方法[J]. 煤炭学报, 2018, 43(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801008.htm

    MA Liqiang, ZHANG Dongsheng, WANG Shuokang, et al. Water-preserved mining with the method named "backfilling while mining"[J]. Journal of China Coal Society, 2018, 43(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801008.htm

    [10] 范立民. 保水采煤的科学内涵[J]. 煤炭学报, 2017, 42(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701004.htm

    FAN Limin. Scientific connotation of water-preserved mining[J]. Journal of China Coal Society, 2017, 42(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701004.htm

    [11] 董书宁, 杨志斌, 姬中奎, 等. 神府矿区大型水库旁烧变岩水保水开采技术研究[J]. 煤炭学报, 2019, 44(3): 709-717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903007.htm

    DONG Shuning, YANG Zhibin, JI Zhongkui, et al. Study on water-preserved mining technology of burnt rock aquifer beside the large reservoir in Shenfu mining area[J]. Journal of China Coal Society, 2019, 44(3): 709-717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903007.htm

    [12] 张雁, 黄选明, 彭巍, 等. 截水帷幕在露天煤矿截渗减排中的应用[J]. 煤炭学报, 2020, 45(5): 1865-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005032.htm

    ZHANG Yan, HUANG Xuanming, PENG Wei, et al. Application of water cutoff curtain in the seepage cutoff and drainage reduction of open-pit coal mine[J]. Journal of China Coal Society, 2020, 45(5): 1865-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005032.htm

    [13] 顾大钊, 张勇, 曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm

    GU Dazhao, ZHANG Yong, CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm

    [14] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm

    GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm

    [15] 任学勤, 程晓博, 王文才, 等. 基于"两零循环"的矿井水综合利用技术[J]. 河北冶金, 2019(9): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYJ201909018.htm

    REN Xueqin, CHENG Xiaobo, WANG Wencai, et al. Comprehensive utilization technology of mine water based on "two zero cycle"[J]. Hebei Metallurgy, 2019(9): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYJ201909018.htm

    [16] 李世峰, 高文婷, 牛永强, 等. 矿井废水回灌工程试验研究[J]. 河北工程大学学报(自然科学版), 2012, 29(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201204018.htm

    LI Shifeng, GAO Wenting, NIU Yongqiang, et al. The experimental study on recharge engineering of mine wastewater[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2012, 29(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201204018.htm

    [17] 孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报, 2017, 42(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701008.htm

    SUN Yajun, ZHANG Mengfei, GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society, 2017, 42(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701008.htm

    [18] 曾繁富, 左明星, 宋洪柱, 等. 乌审旗一带刘家沟组作为高矿化度矿井水回灌目的层的可行性分析[J]. 煤炭与化工, 2020, 43(11): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ202011016.htm

    ZENG Fanfu, ZUO Mingxing, SONG Hongzhu, et al. Feasibility analysis of the Liujiagou Group in the Wushen Banner area as a target layer for water recharge in highly mineralized mines[J]. Coal and Chemical Industry, 2020, 43(11): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ202011016.htm

    [19] 杨光辉, 朱开成, 晏嘉. 基于屈服强度理论的深埋砂岩可注性研究[J]. 中国煤炭地质, 2020, 32(8): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202008012.htm

    YANG Guanghui, ZHU Kaicheng, YAN Jia. Study on deeply buried sandstone water inject ability based on yield strength theory[J]. Coal Geology of China, 2020, 32(8): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202008012.htm

    [20] 陈歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州: 中国矿业大学, 2020.

    CHEN Ge. Study on the deep transfer and storage mechanism of mine water in the eastern margin of Ordos basin[D]. Xuzhou: China University of Mining and Technology, 2020.

    [21] 卞伟, 李井峰, 顾大钊, 等. 西部矿区高矿化度矿井水膜蒸馏处理技术[J]. 煤炭科学技术. http://kns.cnki.net/kcms/detail/11.2402.TD.20200207.1604.027.html

    BIAN Wei, LI Jingfeng, GU Dazhao, et al. Technology of membrane distillation treatment for highly-mineralized mine water in western mining area[J]. Coal Science and Technology. http://kns.cnki.net/kcms/detail/11.2402.TD.20200207.1604.027.html

    [22] 葛光荣, 吴一平, 张全. 高矿化度矿井水适度脱盐工艺研究[J]. 煤炭科学技术. https://kns.cnki.net/kcms/detail/11.2402.TD.20210129.1629.002.html

    GE Guangrong, WU Yiping, ZHANG Quan. Study on the moderate desalination process of high salinity mine water[J]. Coal Science and Technology[J]. https://kns.cnki.net/kcms/detail/11.2402.TD.20210129.1629.002.html

    [23] 周新平, 邓秀芹, 李士祥, 等. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101011.htm

    ZHOU Xinping, DENG Xiuqin, LI Shixiang, et al. Characteristics of formation water and its geological significance of lower combination of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2021, 33(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101011.htm

    [24] 战沙, 张金功, 席辉. 鄂尔多斯盆地苏里格地区上古生界主要裂缝的测井识别[J]. 内蒙古石油化工, 2010, 36(10): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201010026.htm

    ZHAN Sha, ZHANG Jingong, XI Hui. Logging identification of the main fractures in the upper Paleozoic in Sulige area of Ordos basin[J]. Inner Mongolia Petrochemical Industry, 2010, 36(10): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201010026.htm

    [25] 谭聪. 鄂尔多斯盆地上二叠统-中上三叠统沉积特征及古气候演化[D]. 北京: 中国地质大学(北京), 2017.

    TAN Cong. Sedimentary characteristics and paleocliamate evolution of the upper Permian and middle upper Triassic strata in Ordos Basin, China[D]. Beijing: China University of Geosciences(Beijing), 2017.

    [26] 刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.

    DIAO Yujie. Study on the reservoir characterization and CO2 migration underground in the Shenhua CCS demonstration project site[D]. Beijing: China University of Geosciences(Beijing), 2017.

    [27] 江成鑫, 赵江, 张洪文. 复杂岩溶条件下锰矿尾矿库地下水溶质运移特征数值模拟研究[J]. 中国环境监测, 2021, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202101017.htm

    JIANG Chengxin, ZHAO Jiang, ZHANG Hongwen. Numerical simulation of solute transport characteristics in groundwater of manganese tailings reservoir under complex karst conditions[J]. Environmental Monitoring in China, 2021, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202101017.htm

  • 期刊类型引用(2)

    1. 蒋新军. 透射槽波在新疆屯宝煤矿多断层工作面的精细探测技术应用. 煤炭技术. 2025(03): 101-106 . 百度学术
    2. 金明方,李度周,王冕,马合飞,仇念广. 不稳定煤层多场联合勘探综合解译技术研究与应用——以河南新义煤矿为例. 地质与勘探. 2024(05): 993-1001 . 百度学术

    其他类型引用(3)

图(7)  /  表(2)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  61
  • PDF下载量:  65
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-08-04
  • 网络出版日期:  2021-11-05
  • 发布日期:  2021-10-24

目录

    /

    返回文章
    返回