基于水文地球化学的合山煤田地下热水特征分析

赵冠华

赵冠华. 基于水文地球化学的合山煤田地下热水特征分析[J]. 煤田地质与勘探, 2021, 49(4): 250-259. DOI: 10.3969/j.issn.1001-1986.2021.04.030
引用本文: 赵冠华. 基于水文地球化学的合山煤田地下热水特征分析[J]. 煤田地质与勘探, 2021, 49(4): 250-259. DOI: 10.3969/j.issn.1001-1986.2021.04.030
ZHAO Guanhua. Characteristics analysis of the geothermal water in Heshan Coalfield based on hydrogeochemistry[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 250-259. DOI: 10.3969/j.issn.1001-1986.2021.04.030
Citation: ZHAO Guanhua. Characteristics analysis of the geothermal water in Heshan Coalfield based on hydrogeochemistry[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 250-259. DOI: 10.3969/j.issn.1001-1986.2021.04.030

 

基于水文地球化学的合山煤田地下热水特征分析

基金项目: 

中国煤炭地质总局广西煤炭地质局2019年重点科研项目 201902

详细信息
    作者简介:

    赵冠华,1969年生,男,广西天等人,高级工程师,从事地质矿产资源勘查技术管理和科研工作. E-mail:543340326@qq.com

  • 中图分类号: TD712

Characteristics analysis of the geothermal water in Heshan Coalfield based on hydrogeochemistry

  • 摘要: 为开发广西合山煤田地下热水资源,以水文地球化学方法为主,通过石英温标法估算地热储层温度,并推测地下热水循环深度,研究地下热水赋存规律。结果显示,合山煤田地下热水补给、径流和排泄受岩溶构造控制,以顺地层为主,穿层次之;接受大气降水入渗补给,水质为HCO3-Ca·Mg型;采用无蒸汽损失的石英温标法,估算热储层温度约80℃,识别出浅层地下水、浅层地下水与深部地下循环混合水和深部地下循环水3种类型;以井田内No.6钻孔数据为例,800 m孔深以下为深层地下循环水,其热储层温度为63.44~79.41℃,循环深度在2 541~2 704 m,与实际地层埋深相差较小,估算结果可信度较高;在1 400 m以浅,有望探寻到水温约50℃热水;合山煤田地下热水的偏硅酸、温度均达到医疗要求;三、四煤层热导率低,孔隙率小,为热储层良好盖层;四煤层底板合山组下段和茅口组溶隙发育,为良好热水储层。研究成果对煤田地热资源的开发利用前景预测有一定的探索意义。
    Abstract: In order to develop geothermal water resources in Heshan Coalfield, Guangxi Provence, the temperature of geothermal reservoir was estimated by quartz temperature scale method based on hydrogeochemistry, and the circulation depth of geothermal water was speculated to study the occurrence law of geothermal water. The results show that the recharge, runoff and discharge of underground hot water in Heshan Coalfield are controlled by karst structure, which is mainly along and across the stratum. It receives infiltration recharge from atmospheric precipitation and the water quality is HCO3-Ca·Mg type. By quartz geothermometers without steam loss, the thermal reservoir temperature is estimated to be about 80℃ and three types of water, namely, shallow groundwater, mixed water of shallow groundwater and deep groundwater circulating water and deep groundwater circulating water. Taking No.6 borehole data in the mine field as an example, the temperature of the thermal reservoir is 63.44℃ to 79.41℃, and the circulation depth is 2 541-2 704 m. The difference between the thermal reservoir temperature and the actual buried depth is small and the estimation result is highly reliable. The difference from the actual burial depth is small, indicating the high reliability of the estimation results. At the depth of 1 400 m and around, it is expected to explore geothermal water about 50℃. The metasilicic acid and temperature of underground hot water in Heshan coal field meet the medical requirements. No.3 and No.4 coal seams have low thermal conductivity and small porosity, which are good caprock for thermal reservoir. The lower member of Heshan Formation and Maokou Formation in the floor of No.4 coal seam are developed with solution fissures, which are good hot water reservoirs. The research results have certain exploration significance for the development and utilization prospect prediction of geothermal resources in coalfields.
  • 致谢: 本文在收集资料、撰写论文过程中与广西煤炭地质局首席专家周立坚高级工程师开展了有益的讨论,广西煤炭地质局总工程师农衡才教授级高级工程师、罗祺高级工程师审阅全文并提出宝贵意见,广西煤炭地质局多名工作人员在论文行文过程中提供了帮助,在此谨表谢意。
  • 图  1   合山煤田地层与水文地质及储盖层模式

    Fig.  1   Formation hydrogeology and reservoir cap rock model of Heshan Coalfield

    图  2   合山煤田区域地质与水文地质剖面图

    Fig.  2   Conceptual map of regional geology and hydrogeology section in Heshan Coalfield

    表  1   合山煤田部分钻孔可溶性SiO2参数

    Table  1   Parameters of soluble SiO2 in some boreholes in Heshan Coalfield

    取样孔 层位 取样深度/m 可溶性SiO2质量
    浓度/(mg·L –1)
    pH
    No.1 P2 h 1 361.66~367.62 5.5 7.90
    No.2 P2h1 128.00~171.00 2.5 7.20
    No.3 P2h1 40.79~86.39 10 8.00
    No.4 P2m2 473.50~486.00 10 7.50
    No.5 P2h1 & P1m2 733.05~820.08 12 7.30
    No.6 P2h1 887.35~889.75 20 7.40
    No.6 P2h1 & P2m2 914.65~920.25 30 8.04
    No.7 P2h1 24.00~85.85 15 7.45
    No.8 P2h1 351.60~359.20 2.5 7.30
    No.9 P2m2 353.20~429.20 12 7.50
    No.10 P2h1 & P1m2 109.00~112.00 10 7.69
    No.11 P2m40.50~413.90 9 7.46
    No.12 P2h1 165.30~200.90 2 7.40
    No.13 P2h1 130.00~149.30 6.5 7.45
    下载: 导出CSV

    表  2   合山煤田石英地热温标法估算热储层温度

    Table  2   Estimation of reservoir temperature by quartz geotherm scale method in Heshan Coalfield

    取样孔 热储层估算温度/℃ 取样温度/℃ 取样孔 热储层估算温度/℃ 取样
    温度/℃
    No.1 21.03 27.0 No.7 52.97 24
    No.2 0.01 22.5 No.8 0.01 25
    No.3 39.26 23.0 No.9 45.28 25
    No.4 39.26 25.5 No.10 39.26 22
    No.5 45.28 29.0 No.11 35.89 25
    No.6 63.44 41.0 No.12 –5.40 23
    No.6 79.41 41.0 No.13 25.91 25.5
    下载: 导出CSV

    表  3   合山煤田No.6孔实测地温资料

    Table  3   Ground temperature data of No.6 drillhole in Heshan Coalfield

    序号 孔深/m 温度/℃ 序号 孔深/m 温度/℃
    1 0 27.8 11 500 27.3
    2 50 23.6 12 550 27.6
    3 100 23.8 13 600 27.9
    4 150 24.1 14 650 28.4
    5 200 24.4 15 700 28.9
    6 250 24.5 16 750 29.5
    7 300 25.0 17 800 30.1
    8 350 25.2 18 850 33.0
    9 400 26.7 19 900 37.0
    10 450 26.9 20 944 41.0
    下载: 导出CSV

    表  4   合山煤田No.6孔热储循环深度估算

    Table  4   Estimation of thermal storage cycle depth of No.6 borehole in Heshan Coalfield

    估算深度/m 无蒸汽损失的石英温标法估算温度/℃ 热水循环深度/m
    889.75 63.44 2 541
    920.00 79.41 2 704
    下载: 导出CSV
  • [1] 广西合山矿务局, 辽宁省煤炭研究所. 广西合山里兰矿地热特征[J]. 煤田地质与勘探, 1978, 6(1): 29-34. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9cd571f5-a46a-48fa-b4cd-d78abb552007

    Guangxi Heshan Mining Bureau, Liaoning Coal Research Institute. Geothermal characteristics of the Lilan mine in Heshan Guangxi[J]. Coal Geology & Exploration, 1978, 6(1): 29-34. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9cd571f5-a46a-48fa-b4cd-d78abb552007

    [2] 广西煤炭地质一五〇勘探队. 广西壮族自治区合山市、来宾县合山煤田平阳区专门水文地质勘探报告[R]. 南宁: 广西煤炭地质一五〇勘探队, 1989.

    No. 150 Exploration Team of Guangxi Coal Geology. Special hydrogeological exploration report of Pingyang Coalfield in Heshan City and Laibin County, Guangxi Zhuang Autonomous Region[R]. Nanning: No. 150 Exploration Team of Guangxi Coal Geology, 1989.

    [3] 唐健生, 关碧珠, 吴少斌, 等. 南宁新生代沉积盆地型地热资源前景研究[M]. 桂林: 广西师范大学出版社, 2005.

    TANG Jiansheng, GUAN Bizhu, WU Shaobin, et al. A study on the prospect of Cenozoic sedimentary basin geothermal resources in Nanning[M]. Guilin: Guangxi Normal University Press, 2005.

    [4] 张毅, 郭东明. 中国深部煤矿地热资源评价及利用分析[M]. 北京: 冶金工业出版社, 2012.

    ZHANG Yi, GUO Dongming. Evaluation and utilization of geothermal resources in deep coal mines in China[M]. Beijing: Metallurgical Industry Press, 2012.

    [5] 毕世科. 唐口煤矿深部地热资源利用研究[D]. 徐州: 中国矿业大学, 2018.

    BI Shike. Utilization of the deep geothermal resource in Tangkou coal mine[D]. Xuzhou: China University of Mining and Technology, 2018.

    [6] 张福强, 赵冠华, 廖家隆, 等. 广西合山煤田隐伏地热找矿前景分析[J]. 中国煤炭地质, 2019, 31(11): 43-49. DOI: 10.3969/j.issn.1674-1803.2019.11.10

    ZHANG Fuqiang, ZHAO Guanhua, LIAO Jialong, et al. Prospect analysis of concealed geothermal prospecting in Heshan coalfield, Guangxi[J]. Coal Geology of China, 2019, 31(11): 43-49. DOI: 10.3969/j.issn.1674-1803.2019.11.10

    [7] 李波. 合山平阳勘探区地下水与地温关系探讨[J]. 煤田地质与勘探, 1991, 19(4): 45-47. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cb18c368-79ed-4f67-982f-f31ec7ad9478

    LI Bo. Discussion on the relationship between groundwater and ground temperature in Heshan City Pingyang exploration area[J]. Coal Geology & Exploration, 1991, 19(4): 45-47. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cb18c368-79ed-4f67-982f-f31ec7ad9478

    [8] 黄伟斌, 潘树仁, 丁致中. 苏南地区地下热水的化学特征[J]. 江苏煤炭, 2001(2): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT200102004.htm

    HUANG Weibin, PAN Shuren, DING Zhizhong. Chemical characteristics of underground hot water in southern Jiangsu Province[J]. Jiangsu Coal Journal, 2001(2): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT200102004.htm

    [9] 吴红梅, 孙占学. 地热系统中矿物-流体化学平衡的计算[J]. 华东地质学院学报, 2000, 23(1): 39-42. DOI: 10.3969/j.issn.1674-3504.2000.01.009

    WU Hongmei, SUN Zhanxue. Calculation of the fluid-rock equilibrium state in the geothermal system[J]. Journal of East China Geological Institute, 2000, 23(1): 39-42. DOI: 10.3969/j.issn.1674-3504.2000.01.009

    [10] 郎旭娟, 蔺文静, 刘志明, 等. 贵德盆地地下热水水文地球化学特征[J]. 地球科学, 2016, 41(10): 1723-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201610008.htm

    LANG Xujuan, LIN Wenjing, LIU Zhiming, et al. Hydrochemical characteristics of geothermal water in Guide Basin[J]. Earth Science, 2016, 41(10): 1723-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201610008.htm

    [11] 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.

    WANG Jiyang. Geothermics and its applications[M]. Beijing: Science Press, 2015.

    [12] 董家国. 试论合山煤田深部岩溶发育特征[J]. 煤田地质与勘探, 1988, 15(3): 48-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=19ee7059-8674-4109-ae27-93ddc850d6a0

    DONG Jiaguo. On the development characteristics of deep karst in Heshan coalfield[J]. Coal Geology & Exploration, 1988, 15(3): 48-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=19ee7059-8674-4109-ae27-93ddc850d6a0

    [13] 刘毓初. 合山煤田的岩溶[J]. 煤田地质与勘探, 1987, 14(2): 47-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c195de6d-cfcf-49bd-a46b-fabb5d32c8ef

    LIU Yuchu. Karst in Heshan coalfield[J]. Coal Geology & Exploration, 1987, 14(2): 47-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c195de6d-cfcf-49bd-a46b-fabb5d32c8ef

    [14] 董家国. 广西合山煤田发现火成岩[J]. 煤田地质与勘探, 1973, 1(2): 66-70. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b3f60f84-dbf5-455e-99d5-42377a8e2adf

    DONG Jiaguo. Discovery of igneous rocks in Heshan coalfield, Guangxi[J]. Coal Geology & Exploration, 1973, 1(2): 66-70. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b3f60f84-dbf5-455e-99d5-42377a8e2adf

    [15] 王皓, 柴蕊. 地热温标在地热系统中的应用研究[J]. 河北工程大学学报(自然科学版), 2009, 26(3): 54-58. DOI: 10.3969/j.issn.1673-9469.2009.03.014

    WANG Hao, CHAI Rui. Application of geothermometers in the geothermal system[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2009, 26(3): 54-58. DOI: 10.3969/j.issn.1673-9469.2009.03.014

    [16] 王广才. 平顶山矿区地下热水深部温度估算-地球化学温标的应用[J]. 煤田地质与勘探, 1996, 24(5): 40-42. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cd8c17f6-e0e0-4a5a-a53e-b0c8d192632c

    WANG Guangcai. The temperature estimation of deep geothermal water in Pingdingshan coalfield[J]. Coal Geology & Exploration, 1996, 24(5): 40-42. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cd8c17f6-e0e0-4a5a-a53e-b0c8d192632c

    [17] 杨昌永, 郝春生, 李瑾, 等. 寺家庄井田地温负异常及其主控因素[J]. 煤田地质与勘探, 2018, 46(6): 74-80. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0cabd636-9a52-4d70-8c1c-9198c15d51c6

    YANG Changyong, HAO Chunsheng, LI Jin, et al. Negative geothermal anomaly and its main geological controlling factors in Sijiazhuang minefield[J]. Coal Geology & Exploration, 2018, 46(6): 74-80. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0cabd636-9a52-4d70-8c1c-9198c15d51c6

    [18] 徐胜平, 彭涛, 吴基文, 等. 两淮煤田煤系岩石热导率特征及其对地温场的影响[J]. 煤田地质与勘探, 2014, 42(6): 76-81. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=db8550b7-b522-4254-829c-12d8a9eb58ef

    XU Shengping, PENG Tao, WU Jiwen, et al. The characteristics of rock thermal conductivity of coal measure strata and their influence on geothermal field in Huainan-Huaibei coalfield[J]. Coal Geology & Exploration, 2014, 42(6): 76-81. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=db8550b7-b522-4254-829c-12d8a9eb58ef

    [19] 国家标准化管理委员会, 国家质量监督检验检疫总局. 天然矿泉水资源地质勘探规范: GB/T 13727—2016[S]. 北京: 中国标准出版社, 2016.

    National Standardization Management Committee, General Administration of Quality Supervision, Inspection and Quarantine. Code for geological exploration of natural mineral water resources: GB/T 13727—2016[S]. Beijing: Standards Press of China, 2016.

    [20] 邵龙义, 鲁静, JONES T, 等. 桂中晚二叠世碳酸盐岩型煤系高有机硫煤的矿物学和地球化学研究[J]. 煤炭学报, 2006, 31(6): 770-775. DOI: 10.3321/j.issn:0253-9993.2006.06.016

    SHAO Longyi, LU Jing, JONES T, et al. Mineralogy and geochemistry of the high-organic sulphur coals from the carbonate coal measures of the Late Permian in central Guangxi[J]. Journal of China Coal Society, 2006, 31(6): 770-775. DOI: 10.3321/j.issn:0253-9993.2006.06.016

    [21] 谢志忠. 合山煤田4号煤地球化学特征[D]. 邯郸: 河北工程大学, 2019.

    XIE Zhizhong. Geochemical characteristics of the No. 4 coal in Heshan coalfield[D]. Handan: Hebei University of Engineering, 2019.

    [22] 朱光有, 张水昌, 梁英波. 中国海相碳酸盐岩气藏硫化氢形成的控制因素和分布预测[J]. 科学通报, 2007, 52(增刊1): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1014.htm

    ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo. Controlling factors and distribution prediction of hydrogen sulfide formation in marine carbonate gas reservoirs in China[J]. Chinese Science Bulletin, 2007, 52(Sup. 1): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1014.htm

    [23] 贺训云, 姚根顺, 贺晓苏, 等. 桂中坳陷桂中1井沥青成因及油气成藏模式[J]. 石油学报, 2010, 31(3): 420-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003011.htm

    HE Xunyun, YAO Genshun, HE Xiaosu, et al. Bitumen genesis and hydrocarbon accumulation pattern of well Guizhong-1 in Guizhong depression[J]. Acta Petrolei Sinica, 2010, 31(3): 420-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003011.htm

图(2)  /  表(4)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  29
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2021-05-19
  • 网络出版日期:  2021-09-09
  • 发布日期:  2021-08-24

目录

    /

    返回文章
    返回