神东矿区地表移动参数变化规律及影响机制

周婷婷, 苏丽娟, 刘辉, 朱晓峻

周婷婷, 苏丽娟, 刘辉, 朱晓峻. 神东矿区地表移动参数变化规律及影响机制[J]. 煤田地质与勘探, 2021, 49(3): 189-198. DOI: 10.3969/j.issn.1001-1986.2021.03.024
引用本文: 周婷婷, 苏丽娟, 刘辉, 朱晓峻. 神东矿区地表移动参数变化规律及影响机制[J]. 煤田地质与勘探, 2021, 49(3): 189-198. DOI: 10.3969/j.issn.1001-1986.2021.03.024
ZHOU Tingting, SU Lijuan, LIU Hui, ZHU Xiaojun. Variation law and influencing mechanism of surface movement parameters in Shendong Mining Area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 189-198. DOI: 10.3969/j.issn.1001-1986.2021.03.024
Citation: ZHOU Tingting, SU Lijuan, LIU Hui, ZHU Xiaojun. Variation law and influencing mechanism of surface movement parameters in Shendong Mining Area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 189-198. DOI: 10.3969/j.issn.1001-1986.2021.03.024

 

神东矿区地表移动参数变化规律及影响机制

基金项目: 

国家自然科学基金项目 51804001

安徽省高校自然科学研究重点项目 KJ2018A0003

安徽省高校协同创新项目 GXXT-2020-055

详细信息
    作者简介:

    周婷婷, 1995年生, 女, 安徽合肥人, 硕士研究生, 从事矿山开采沉陷方向研究.E-mail: 1075966093@qq.com

    通讯作者:

    刘辉, 1982年生, 男, 山东肥城人, 博士, 副教授, 从事矿山开采沉陷及生态环境治理等方向的教学与科研工作.E-mail: lhui99@aliyun.com

  • 中图分类号: TD167

Variation law and influencing mechanism of surface movement parameters in Shendong Mining Area

  • 摘要: 我国西部矿区普遍具有资源储量大、埋藏浅、覆岩结构简单等特点,采矿活动对地表影响明显。为研究神东矿区地表移动参数变化规律,首先基于大柳塔矿22201工作面实测数据分析其地表动态变形规律,再采用神东矿区18个工作面的实测数据,获得地表移动参数与地质采矿条件之间的对应关系,并分析地质采矿条件对地表移动参数的影响机理。研究表明:神东矿区煤层开采地表沉陷速度快、衰退期短,最大下沉速度达643.3 mm/d,活跃期下沉量占总下沉量的99.05%;下沉系数与松散层采深比呈先增大后减小的二次函数关系,水平移动系数、主要影响角正切分别与(采高×开采速度)/(宽深比×基岩厚度)、基岩厚度×开采速度/(采深×采高)呈先减小后增大的二次函数关系;边界角、裂缝角与松散层采深比呈正线性关系,移动角与基岩采深比成正比,与采高、开采速度成反比;基岩承载松散层荷载及松散层拱效应的变化是导致地表移动参数变化的根本原因。研究成果对西部矿区地表破坏控制与治理、矿井生产安全保障及生态环境修复具有工程实用价值。
    Abstract: The mining areas in western China generally have the characteristics of large reserves, shallow depth and simple overlying rock structure, and mining activities in such areas have a significant impact on the surface. In order to study the variation law of surface deformation and rock movement parameters in Shendong Mining Area, the dynamic deformation of the surface was studied based on the measured data of working face 22201 of Daliuta Coal Mine. Then the relationship between surface movement parameters and geological mining conditions were obtained from the measured data of 18 working faces in Shendong Mining Area, and the influence mechanism of geological and mining conditions on surface movement parameters was analyzed. The results show that mining in Shendong Mining Area has a fast surface subsidence rate and a short recession period, with the maximum subsidence rate of 643.3 mm/d, and the subsidence in the active period accounts for 99.05% of the total subsidence. The subsidence coefficient has a quadratic function relation with the ratio of loose bed thickness to mining depth that first increases and then decreases; the horizontal movement coefficient and the main influence angle tangent have a quadratic function relation with mining height times mining rate(width to depth ratio times bedrock thickness) and bedrock thickness times mining rate(mining depth times mining height) that first decreases and then increases, respectively. The boundary angle and crack angle have a positive linear relationship with the ratio of loose bed thickness to mining depth, and the displacement angle is directly proportional to the ratio of bedrock thickness to mining depth and inversely proportional to the mining thickness and the mining rate. The changes in bedrock bearing loose layer load and loose layer arching effect are the root causes of changes in ground movement parameters. The research could provide engineering practical value for the control and treatment of surface damage, and mine production safety and ecological environment restoration in western mining areas.
  • 图  1   大柳塔矿22201工作面钻孔柱状图

    Fig.  1   Drilling diagram of working face 22201 of Daliuta Coal Mine

    图  2   22201工作面地表观测站布置

    Fig.  2   Layout of surface observation lines of working face 22201

    图  3   22201工作面不同时期动态下沉曲线

    Fig.  3   Dynamic sink curves in different time of working face 22201

    图  4   22201工作面不同时期水平变形曲线

    Fig.  4   Horizontal deformation curves in different time of working face 22201

    图  5   22201工作面下沉速度曲线

    Fig.  5   Sinking speed curves of surface working face 22201

    图  6   22201工作面地表下沉持续时间

    Fig.  6   Duration of surface movement of working face 22201

    图  7   下沉系数q与松散层采深比h0/H0的关系

    Fig.  7   Correlation of q and h0/H0

    图  8   bMC/[(D/H0)h]的关系

    Fig.  8   Correlation of b and MC/[(D/H0h)]

    图  9   tanβhC/(H0M)的关系

    Fig.  9   Correlation of tanβ and hC/(H0M)

    图  10   边界角与h0/H0的关系

    Fig.  10   Correlation of boundary angle and h0/H0

    图  11   移动角与MC/(h/H0)的关系

    Fig.  11   Correlation of displacement angle and MC/(h/H0)

    图  12   裂缝角与h0/H0的关系

    Fig.  12   Correlation of crack angle and h0/H0

    表  1   神东矿区部分矿井基本信息[11, 16-32]

    Table  1   Basic information of some mines in Shendong Mining Area[11, 16-32]

    分类 观测站 工作面尺寸/(m×m) H0/m D/H0 h0/m h/m M/m C/(m·d–1) q b tanβ δ0/(°) γ0(β0)/(°) δ0/(°) γ(β)/(°) δ″/(°)
    0.07 < h0/H0≤0.30 布尔台矿22103-1 360×4 250 295.0 1.22 20.0 275.0 3.40 8.30 0.64 0.21 2.00 49.1 74.0 66.0
    杨家村222201 240×1 600 133.0 1.80 10.0 123.0 5.00 5.10 0.70 2.40 56.0 71.0 71.0 74.0
    大柳塔矿52304 301×4 547 235.0 1.28 30.0 205.0 6.94 6.80 0.67 0.24 2.25 53.7 53.7 63.7 68.0 69.4
    大柳塔矿22201 349×643 72.5 4.81 12.0 60.5 3.95 9.60 0.76 0.21 1.55 50.8 51.7 67.3 72..1
    活鸡兔矿12205 230×2 250 87.0 2.64 19.0 68.0 3.57 12.00 0.73 0.33 1.98 50.0 52.0 67.0 67.0 72.0
    柠条塔矿N1200 300×1 500 109.0 2.75 31.0 78.0 5.87 4.50 0.85 60.3 60.7 81.3
    柳塔矿12106 247×633 120.0 2.06 35.0 85.0 7.50 7.00 0.78 0.30 2.80 57.7 56.0 67.2 68.4 77.5
    乌兰木伦矿2207 158×892 102.0 1.55 30.0 72.0 2.20 2.80 0.78 0.44 1.87 52.0 60.5 70.0 72.0 70.0
    0.30 < h0/H0≤0.55 上湾12401 300×5 429 184.0 1.63 62.0 122.0 8.60 13.6 57.0 58.0 45.0 46.0 76.0
    冯家塔矿1201 250×1 850 210.0 1.19 73.0 137.0 3.30 8.30 0.75 70.0 70.0
    柠条塔矿N1206 300×1 500 162.0 1.85 57.6 104.4 5.90 7.35 0.73 0.25 1.93 62.6 62.6 72.2 81.9
    补连塔矿2211 185×1 367 110.0 1.68 40.0 70.0 4.00 8.00 0.65 0.37 61.0 60.0
    大柳塔矿1203 150×938 61.0 2.46 26.0 35.0 4.03 2.40 0.59 0.29 2.65 64.2 64.5 69.6 70.5 79.0
    哈拉沟矿22407 284×3 224 130.0 2.18 57.0 73.0 5.40 15.00 0.65 1.60 60.0 62.7 58.4
    柠条塔矿N1114 245×2 100 123.0 1.99 60.9 62.1 1.85 6.10 0.63 0.28 1.52 59.7 68.7
    韩家湾矿2304 268×1 800 130.0 2.06 65.0 65.0 4.10 8.00 0.56 0.28 1.97 62.5 62.5 86.4
    三道沟矿85201 295×3 160 200.0 1.48 108.0 92.0 6.50 3.70 64.0 61.0 70.8 82.1
    张家峁15201 266×2 295 128.0 2.08 70.0 58.0 6.30 7.00 0.54 0.51 2.87 63.0 71.0 73.4 80.0
    注:D为工作面宽度;h0为松散层厚度;h为基岩厚度;M为采高;煤层倾角均为0°~5°;D/H为宽深比,表示工作面宽度/平均采深。
    下载: 导出CSV

    表  2   东部矿区部分矿井地表移动参数[17]

    Table  2   Surface movement parameters of some mines in eastern mining area[17]

    矿区 观测站 q b tanβ δ0/(°) β0/(°) γ0/(°) δ/(°) β/(°) γ/(°) δ″/(°)
    两淮 谢桥矿1118 1.14 0.30 2.09 55.3 53.3 51.6 65.7 67.3
    丁集矿1141(3) 1.10 0.30 1.80 56.0 49.4 49.7 67.9 62.9 66.4 70.2
    刘桥矿421 0.96 0.40 1.45 48.0 45.0 52.0 67.0 66.0
    焦作 冯营矿1221 0.88 0.30 2.00 60.0 53.0 55.0 64.0 57.0 70.0 66.0
    焦西矿102(3) 1.16 0.27 2.10 61.5 42.0 52.5 87.0 60.5 74.0 74.0
    朱村矿151上山 0.92 0.31 1.80 40.0 40.0 43.5 67.2 52.0 68.5 63.0
    新汶 孙村矿四采区 0.60 0.32 2.30 63.0 59.0 61.5 70.0 70.0 72.4 76.4
    汶南矿11501 0.66 0.32 2.20 62.0 60.5 60.7 71.0 68.5 71.8 75.0
    鄂庄矿2401西 0.64 0.30 1.90 64.5 60.7 63.0 65.0 72.4 74.0
    潞安 王庄矿6206 0.82 0.69 2.70 66.0 59.0 63.0 73.0 72.0 74.0 80.0
    邢台 邢东矿1100采区 0.66 0.34 1.90 52.0 63.0 61.0 71.0 68.0 82.0 42.0
    兖州 兴隆矿4314 0.84 0.23 2.34 59.0 51.7 72.1 69.2 76.4
    大同 塔山矿8104 0.47 0.30 2.00 76.7 76.7 76.7 78.6 78.6 78.6 78.8
    晋城 东峰矿区3114 0.69 0.28 1.80 65.0 65.0 65.0 70.0 70.0 70.0 75.0
    徐州 庞庄矿102 0.92 0.37 1.70 53.1 54.0 54.0 77.0 65.5 78.5 73.0
    西山 西曲矿22101 0.79 0.33 2.40 58.0 67.0 74.0 72.0 79.0
    下载: 导出CSV

    表  3   东西部矿区地表移动参数对比

    Table  3   Comparison of surface movement parameters in eastern and western mining areas

    矿区 地表移动参数 q b tanβ δ0/(°) β0/(°) γ0/(°) δ/(°) β/(°) γ/(°) δ″/(°)
    神东矿区 最小值 0.54 0.21 1.52 50.0 49.1 49.1 45.0 46.0 46.0 66.0
    平均值 0.69 0.31 2.11 58.3 57.4 57.4 65.7 67.4 67.4 76.6
    最大值 0.85 0.51 2.87 64.2 64.5 64.5 71.0 74.0 74.0 86.4
    东部矿区 最小值 0.47 0.23 1.45 40.0 40.0 43.5 64.0 52.0 66.4 42.0
    平均值 0.83 0.34 2.03 59.1 56.2 57.5 72.4 66.6 72.3 71.3
    最大值 1.16 0.69 2.7 76.7 76.7 76.7 87.0 78.6 82.0 80.0
    下载: 导出CSV
  • [1] 柴华彬, 邹友峰, 梁和平, 等. 开采沉陷岩移参数研究现状分析[J]. 河南理工大学学报(自然科学版), 2013, 32(5): 567-570. DOI: 10.3969/j.issn.1673-9787.2013.05.012

    CHAI Huabin, ZOU Youfeng, LIANG Heping, et al. Research status of rock movement parameters of mining subsidence[J]. Journal of Henan Polytechnic University(Natural Science), 2013, 32(5): 567-570. DOI: 10.3969/j.issn.1673-9787.2013.05.012

    [2] 于洋, 邓喀中. 两淮矿区地表移动角值参数规律研究[J]. 煤炭工程, 2012(5): 85-87. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201205031.htm

    YU Yang, DENG Kazhong. Study on angle parameter law of surface ground movement in Huainan and Huaibei mining areas[J]. Coal Engineering, 2012(5): 85-87. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201205031.htm

    [3] 王永华, 张旺, 张代军, 等. 东部矿区开采深度对地表移动参数的影响规律研究[J]. 中国矿业, 2020, 29(8): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202008023.htm

    WANG Yonghua, ZHANG Wang, ZHANG Daijun, et al. Influences of surface movement parameters due to mining depth in eastern mining area[J]. China Mining Magazine, 2020, 29(8): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202008023.htm

    [4] 郑志刚, 滕永海. 厚松散层综放开采条件下地表岩移参数分析[J]. 煤矿开采, 2016, 21(2): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201602007.htm

    ZHENG Zhigang, TENG Yonghai. Ground surface rock strata movement parameters of thick loose strata with fully mechanized top coal caving[J]. Coal Ming Technology, 2016, 21(2): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201602007.htm

    [5] 张文泉, 刘海林, 赵凯. 厚松散层薄基岩条带开采地表沉陷影响因素研究[J]. 采矿与安全工程学报, 2016, 33(6): 1065-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606015.htm

    ZHANG Wenquan, LIU Hailin, ZHAO Kai. Influential factors on surface subsidence in stripe mining under thick unconsolidated layers and thin bedrock[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 1065-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606015.htm

    [6] 刘辉, 刘小阳, 邓喀中, 等. 基于UDEC数值模拟的滑动型地裂缝发育规律[J]. 煤炭学报, 2016, 41(3): 625-632. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603015.htm

    LIU Hui, LIU Xiaoyang, DENG Kazhong, et al. Developing law of sliding ground fissures based on numerical simulation using UDEC[J]. Journal of China Coal Society, 2016, 41(3): 625-632. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603015.htm

    [7] 郭文兵, 邓喀中, 邹友峰. 岩层移动角选取的神经网络方法研究[J]. 中国安全科学学报, 2003, 13(9): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200309017.htm

    GUO Wenbing, DENG Kazhong, ZOU Youfeng. Study on artificial neural network method for calculation of displacement angle of strata[J]. China Safety Science Journal, 2003, 13(9): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200309017.htm

    [8] 吕伟才, 黄晖, 池深深, 等. 概率积分预计参数的神经网络优化算法[J]. 测绘科学, 2019, 44(9): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201909006.htm

    LYU Weicai, HUANG Hui, CHI Shenshen, et al. Neural network optimization algorithm for the prediction parameters of probability integral method[J]. Science of Surveying and Mapping, 2019, 44(9): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201909006.htm

    [9] 王来, 张力, 王渭明. 龙口矿区地表移动的参数识别与变形预报[J]. 岩土力学, 2003, 24(增刊2): 375-378. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2087.htm

    WANG Lai, ZHANG Li, WANG Weiming. Identification of parameters and predication of displacements about ground subsidence in Longkou mining area[J]. Rock and Soil Mechanics, 2003, 24(Sup. 2): 375-378. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2087.htm

    [10]

    LEI Wang, TAO Wei, NAN Li, et al. Research on probability integration parameter inversion of mining-induced surface subsidence based on quantum annealing[J]. Environmental Earth Sciences, 2018, 77(21): 10-13. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112811473.html

    [11] 刘辉. 西部黄土沟壑区采动地裂缝发育规律及治理技术研究[D]. 徐州: 中国矿业大学, 2014.

    LIU Hui. The development law and treatment technology of ground fissures due to underground mining in loess hilly area of Western China[D]. Xuzhou: China University of Mining and Technology, 2014.

    [12] 何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1994.

    HE Guoqing, YANG Lun, LING Gengdi, et al. Mining subsidence science[M]. Xuzhou: China University of Mining and Technology Press, 1994.

    [13] 邹友峰, 邓喀中, 马伟民. 矿山开采沉陷工程[M]. 徐州: 中国矿业大学出版社, 2003.

    ZOU Youfeng, DENG Kazhong, MA Weimin. Mining subsidence engineering[M]. Xuzhou: China University of Mining and Technology Press, 2003.

    [14] 郭文兵, 邓喀中, 邹友峰. 概率积分法预计参数选取的神经网络模型[J]. 中国矿业大学学报, 2004, 33(3): 322-326. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200403021.htm

    GUO Wenbing, DENG Kazhong, ZOU Youfeng. Artificial neural network model for predicting parameters of probability-integral method[J]. Journal of China University of Mining & Technology, 2004, 33(3): 322-326. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200403021.htm

    [15] 李凤明, 梁京华. 厚冲积层矿区地表移动参数与地质采矿条件之间的关系及其特点[J]. 煤炭科学技术, 1996, 24(3): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ603.008.htm

    LI Fengming, LIANG Jinghua. The relationship between surface movement parameters and geological and mining conditions in thick alluvium mining areas and their characteristics[J]. Coal Science and Technology, 1996, 24(3): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ603.008.htm

    [16] 陈凯. 东胜矿区浅埋煤层综采条件下岩移参数规律研究[J]. 煤炭科学技术, 2019, 47(3): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201903028.htm

    CHEN Kai. Study on laws of overburden movement parameters under fully-mechanized mining conditions in shallow coal seam of Dongsheng mining area[J]. Coal Science and Technology, 2019, 47(3): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201903028.htm

    [17] 胡炳南, 张华兴, 申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017.

    HU Bingnan, ZHANG Huaxing, SHEN Baohong. Guidelines for coal pillar retention and compressed coal mining in buildings, water bodies, railways and main shafts[M]. Beijing: China Coal Industry Publishing House, 2017.

    [18] 杨景才. 厚风积砂下浅埋工作面安全开采技术研究[D]. 阜新: 辽宁工程技术大学, 2003.

    YANG Jingcai. Research of safety mining techniques of shallow work face under thick wind sands[D]. Fuxin: Liaoning Technical University, 2003.

    [19] 郭俊廷, 李全生. 浅埋高强度开采地表破坏特征: 以神东矿区为例[J]. 中国矿业, 2018, 27(4): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201804022.htm

    GUO Junting, LI Quansheng. Surface damage characteristics in shallow-buried coal seam with strong disturbance mining: Taking Shendong coal mine district as an example[J]. China Mining Magazine, 2018, 27(4): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201804022.htm

    [20] 陈盼, 谷拴成, 张幼振. 浅埋煤层垂向重复采动下地表移动规律实测研究[J]. 煤炭科学技术, 2016, 44(11): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201611032.htm

    CHEN Pan, GU Shuancheng, ZHANG Youzhen. Study on site measurement of surface movement law under shallow depth coal and vertically repeated mining[J]. Coal Science and Technology, 2016, 44(11): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201611032.htm

    [21] 李杰. 浅埋厚煤层综放开采地表移动与覆岩破坏规律研究[D]. 北京: 煤炭科学研究总院, 2012.

    LI Jie. Study on ground movement and the overburden failure law by fully mechanized top coal caving mining in thick seam with shallow depth[D]. Beijing: China Coal Research Institute, 2012.

    [22] 魏秉亮, 范立民, 杨宏科. 浅埋近水平煤层采动地面变形规律研究[J]. 中国煤田地质, 1999, 11(3): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199903013.htm

    WEI Bingliang, FAN Limin, YANG Hongke. On the surface deformation of coal mining in shallow coal seam[J]. Coal Geology of China, 1999, 11(3): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199903013.htm

    [23] 余学义, 穆驰, 张冬冬. 厚松散层大采高开采地表移动变形规律研究[J]. 煤矿安全, 2020, 51(4): 235-239. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202004050.htm

    YU Xueyi, MU Chi, ZHANG Dongdong. Study on law of surface movement and deformation in thick loose layer with large mining height[J]. Safety in Coal Mines, 2020, 51(4): 235-239. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202004050.htm

    [24] 戴华阳, 罗景程, 郭俊廷, 等. 上湾矿高强度开采地表裂缝发育规律实测研究[J]. 煤炭科学技术, 2020, 48(10): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202010015.htm

    DAI Huayang, LUO Jingcheng, GUO Junting, et al. In-site surveying and study on development laws of surface cracks by high-intensity mining in Shangwan mine[J]. Coal Science and Technology, 2020, 48(10): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202010015.htm

    [25] 张碧川. 榆神府黄土沟壑区煤层开采地表沉陷灾害分析及评价[D]. 西安: 西安科技大学, 2018.

    ZHANG Bichuan. Analysis and evaluation of coal seam mining surface subsidence disaster in loess gully region of Yushenfu[D]. Xi'an: Xi'an University of Science and Technology, 2018.

    [26] 赵兵朝, 刘宾, 王建文, 等. 柠条塔煤矿叠置开采地表岩移参数分析[J]. 煤矿安全, 2016, 47(9): 213-216. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201609060.htm

    ZHAO Bingchao, LIU Bin, WANG Jianwen, et al. Analysis of surface rock movement parameters in Ningtiaota coal mine superimposed mining[J]. Safety in Coal Mines, 2016, 47(9): 213-216. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201609060.htm

    [27] 张俊鹏. 神东矿区煤层开采覆岩裂隙发育规律及预测方法研究[D]. 焦作: 河南理工大学, 2017.

    ZHANG Junpeng. Study on the crack development law of overburden and its prediction method in Shendong mining area[D]. Jiaozuo: Henan Polytechnic University, 2017.

    [28] 李圣军. 哈拉沟煤矿高强度开采覆岩与地表破坏特征研究[D]. 焦作: 河南理工大学, 2015.

    LI Shengjun. Research on overburden strata and surface failure characteristics with high intensity mining in Halagou coal mine[D]. Jiaozuo: Henan Polytechnic University, 2015.

    [29] 闫伟涛. 浅埋厚煤层开采"错端叠梁"岩层移动模型研究[D]. 北京: 中国矿业大学(北京), 2018.

    YAN Weitao. Strata movement model based on laminated beam structure with dislocation end under the mining of shallow buried thick coal seam[D]. Beijing: China University of Mining and Technology(Beijing), 2018.

    [30] 王鹏. 韩家湾煤矿大采高开采地表移动变形规律研究[D]. 西安: 西安科技大学, 2012.

    WANG Peng. Research on rules of mining ground movement and deformation with large mining height in Hanjiawan coal mine[D]. Xi'an: Xi'an University of Science and Technology, 2012.

    [31] 李云飞. 西北厚松散层地区开采沉陷规律研究[D]. 西安: 西安科技大学, 2014.

    LI Yunfei. Research on mining subsidence laws of thick alluvium region in northwest China[D]. Xi'an: Xi'an University of Science and Technology, 2014.

    [32] 郭佐宁. 张家峁煤矿15201综采工作面地表移动规律研究[D]. 西安: 西安科技大学, 2015.

    GUO Zuoyu. Research on surface movement law of 15201 fully mechanized working face of Zhang Jia-mao coal mine[D]. Xi'an: Xi'an University of Science and Technology, 2015.

    [33] 王金庄, 李永树, 周雄, 等. 巨厚松散层下采煤地表移动规律的研究[J]. 煤炭学报, 1997, 22(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB701.003.htm

    WANG Jinzhuang, LI Yongshu, ZHOU Xiong, et al. Ground movement caused by mining under thick alluvium[J]. Journal of China Coal Society, 1997, 22(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB701.003.htm

    [34] 汪锋, 陈绍杰, 任梦梓, 等. 松散层拱结构及其对采动覆岩稳定性的影响[J]. 中国矿业大学学报, 2019, 48(5): 975-983. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905005.htm

    WANG Feng, CHEN Shaojie, REN Mengzi, et al. Effect of arch structure in unconsolidated layers on failure of the overlying strata[J]. Journal of China University of Mining & Technology, 2019, 48(5): 975-983. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905005.htm

    [35]

    WANG Feng, XU Jialin, XIE Jianlin. Effects of arch structure in unconsolidated layers on fracture and failure of overlying strata[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 141-152. http://www.sciencedirect.com/science/article/pii/S1365160918312279

    [36] 张豪杰, 查剑锋, 李怀展. 概率积分法参数影响因素分析与研究展望[J]. 煤炭技术, 2015, 34(4): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201504007.htm

    ZHANG Haojie, ZHA Jianfeng, LI Huaizhan. Analysis and prospect of influencing factors to parameters of probability integral method[J]. Coal Technology, 2015, 34(4): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201504007.htm

    [37] 郭树勤, 梁华杰, 陈昕昕. 厚松散层下开采高度对地表移动的影响规律研究[J]. 煤炭技术, 2017, 36(11): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201711009.htm

    GUO Shuqin, LIANG Huajie, CHEN Xinxin. Influence role study of caving thickness on surface movement of thick unconsolidated layers[J]. Coal Technology, 2017, 36(11): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201711009.htm

    [38]

    LIU Hui, DENG Kazhong, ZHU Xiaojun, et al. Effects of mining speed on the developmental features of mining-induced ground fissures[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(8): 6297-6309.

图(12)  /  表(3)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  10
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-20
  • 修回日期:  2021-04-12
  • 发布日期:  2021-06-24

目录

    /

    返回文章
    返回