Green detection method of coal burning area in northern Shaanxi based on microbial hydrocarbon detection technology
-
摘要: 煤层中含有各类轻烃,当煤层燃烧后,上覆地层完整性被破坏,给煤层内的烃类散逸提供了良好的通道,这一过程符合轻烃微渗漏原理。因此,引入轻烃微渗漏的微生物烃检测技术对煤层火烧区及其范围进行识别。在陕北侏罗纪煤田郝家梁煤矿进行了2条测线的试验,选择丁烷氧化菌作为检测指标,通过土壤样品采集、微生物培养、菌落计数等微生物检测工作后,结合地质钻孔对微生物值进行标定和异常值分组,并对煤层火烧区轻烃微渗漏的微生物响应特征进行研究。结果表明,在完全火烧区微生物以背景值分布为主,在火烧过渡区微生物以连续高值异常为主,在正常煤层区微生物以中低值为主,从而建立了研究区煤层火烧区微生物响应模型。微生物烃检测技术所解释的煤层火烧区地质成果与磁法解释的火烧边界吻合,且有钻孔验证。微生物烃检测技术的野外实施简单环保,大部分工作在室内完成,更适用于类似陕北生态脆弱区的煤层火烧区探测,有显著的实际意义和经济价值。Abstract: Coal seams contain all kinds of light hydrocarbons. When coal seams are burned, the integrity of overlying strata is destroyed, which provides a good channel for hydrocarbon escape from the coal seam. This process conforms to the principle of light hydrocarbon microseepage. Then, microseepage associated microbial hydrocarbon detection technology is introduced to test its recognition ability of coal seam burning area. In Haojialiang Coal Mine of Jurassic Coalfield in northern Shaanxi, two survey lines were tested and butane bacteria was selected as microbial detection index. After microbial analysis process such as soil sampling, microbial culture, and colony count, combined with geological drilling results, microbial values were calibrated and grouped into abnormal and background values. The microbial response characteristics of light hydrocarbon microseepage in coal burning area were studied. The microbial values in the fully burned area were background low values. In the transition area, the continuous high anomaly microbial values can be seen, while in the normal coal seam area, the microbial anomaly is mainly medium low value. Therefore, the microbial response model of coal burning area was established. The geological results of coal seam burning area explained by microbial hydrocarbon detection technology are consistent with the combustion boundary interpreted by magnetic method, and verified by drilling holes as well. The application of microbial hydrocarbon detection technology in the field is simple and environmentally friendly, and most of the work can be completed indoors. Therefore, it is more suitable for the detection of coal seam burning areas similar to the ecologically fragile area in northern Shaanxi, and has significant practical significance and economic value.
-
-
表 1 微生物值异常分级
Table 1 Microbial value characteristics and abnormal classification
微生物值分级 微生物值区间范围 成图代表颜色 超高异常 96~201 红色 高异常 75~95 橙色 中异常 51~74 黄色 低异常 31~50 绿色 背景值 0~30 蓝色 表 2 郝家梁煤矿地表微生物数据统计
Table 2 Statistical table of Haojialiang Coal Mine's surface microbial data
分区 微生物均值/CFU 微生物值
最小~最大值/CFU异常值个数(比例/%) 高异常值个数(比例/%) 微生物中–低异常区(正常煤层区) 29 6~137 17(59) 6(21) 微生物高异常区(火烧过渡区) 58 31~155 44(76) 24(41) 微生物背景区(火烧区) 37 4~58 5(14) 0(0) -
[1] 齐朝华. 煤层火烧区的TEM响应及视电阻率分布规律研究[D]. 邯郸: 河北工程大学, 2012. QI Zhaohua. The coal seam fire zone of the TEM tesponse and apparent resistivity distribution[D]. Handan: Hebei University of Engineering, 2012.
[2] 张秀山. 新疆煤田火烧区特征及灭火问题探讨[J]. 中国煤田地质, 2004, 16(1): 18-21. DOI: 10.3969/j.issn.1674-1803.2004.01.007 ZHANG Xiushan. Probe into Xinjiang coalfield underground combustion area features and fire-fighting problems[J]. Coal Geology of China, 2004, 16(1): 18-21. DOI: 10.3969/j.issn.1674-1803.2004.01.007
[3] 李斯昊, 张景钢. 同位素测氡法在浅煤层地质火源探测中的应用[J]. 华北科技学院学报, 2011, 8(2): 9-11. DOI: 10.3969/j.issn.1672-7169.2011.02.003 LI Sihao, ZHANG Jinggang. Application of radon measurement with isotope on the survey of fire seat location in shallow coal seam[J]. Journal of North China Institute of Science and Technology, 2011, 8(2): 9-11. DOI: 10.3969/j.issn.1672-7169.2011.02.003
[4] 陈国庆. 磁法在探测煤层火烧区中的应用研究[J]. 能源与环境, 2016(5): 99. DOI: 10.3969/j.issn.1672-9064.2016.05.048 CHEN Guoqing. Application research of magnetic method in detecting coal seam burning area[J]. Energy and Environment, 2016(5): 99. DOI: 10.3969/j.issn.1672-9064.2016.05.048
[5] 缪海宾, 王建国, 王振伟, 等. 新疆别斯库都克露天矿火烧区煤岩试验[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(12): 1618-1621. DOI: 10.3969/j.issn.1008-0562.2013.12.008 MIAO Haibin, WANG Jianguo, WANG Zhenwei, et al. Experimental on coal and rock in burning area of Xinjiang Biesikuduke open pit[J]. Journal of Liaoning Technical University(Natural Science), 2013, 32(12): 1618-1621. DOI: 10.3969/j.issn.1008-0562.2013.12.008
[6] 汝亮, 钟伟杰, 朱裕振, 等. 利用瞬变电磁技术评价火烧区烧变岩的富水性[J]. 华北地震科学, 2013, 31(4): 37-40. DOI: 10.3969/j.issn.1003-1375.2013.04.008 RU Liang, ZHONG Weijie, ZHU Yuzhen, et al. Evaluating water abundance of burnt rocks in fire zone using transient electromagnetic technique[J]. North China Earthquake Science, 2013, 31(4): 37-40. DOI: 10.3969/j.issn.1003-1375.2013.04.008
[7] 江林英. 磁法在探测塔拉德萨依矿区煤层火烧区中的应用[J]. 能源与环境, 2013(2): 57-58. DOI: 10.3969/j.issn.1672-9064.2013.02.025 JIANG Linying. Application of magnetic method in detecting coal seam burning area in Tala Desayi mining area[J]. Energy and Environment, 2013(2): 57-58. DOI: 10.3969/j.issn.1672-9064.2013.02.025
[8] 王一凡, 沈福斌, 郭培虹. 神南矿区火烧区探查技术优选研究[J]. 陕西煤炭, 2017, 36(3): 10-13. DOI: 10.3969/j.issn.1671-749X.2017.03.003 WANG Yifan, SHEN Fubin, GUO Peihong. Research on the optimization of burning area exploration technology in Shennan mining area[J]. Shaanxi Coal, 2017, 36(3): 10-13. DOI: 10.3969/j.issn.1671-749X.2017.03.003
[9] 郝纯, 孙志鹏, 薛健华, 等. 微生物地球化学勘探技术及其在南海深水勘探中的应用前景[J]. 中国石油勘探, 2015, 20(5): 54-62. DOI: 10.3969/j.issn.1672-7703.2015.05.006 HAO Chun, SUN Zhipeng, XUE Jianhua, et al. Microbial geochemical exploration technology and prospect for its application in South China Sea deep water exploration[J]. China petroleum Exploration, 2015, 20(5): 54-62. DOI: 10.3969/j.issn.1672-7703.2015.05.006
[10] 赵忠泉, 孙鸣, 万晓明, 等. 微生物勘探技术在潮汕坳陷油气勘探中的应用初探[J]. 中国地质, 2020, 47(3): 645-654. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003007.htm ZHAO Zhongquan, SUN Ming, WAN Xiaoming, et al. The application of microbial exploration technology to the oil and gas survey of Chaoshan Depression[J]. Geology in China, 2020, 47(3): 645-654. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003007.htm
[11] 曹军, 周进松, 银晓, 等. 微生物地球化学勘探技术在黄土塬地貌区油气勘探中的应用[J]. 特种油气藏, 2020, 27(5): 53-60. DOI: 10.3969/j.issn.1006-6535.2020.05.008 CAO Jun, ZHOU Jinsong, YIN Xiao, et al. Application of microbial geochemical exploration technology in oil and gas exploration in loess tableland regions[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 53-60. DOI: 10.3969/j.issn.1006-6535.2020.05.008
[12] 丁力, 吴宇兵, 刘芬芬. 中拐凸起火山岩油气藏微生物地球化学勘探研究[J]. 特种油气藏, 2018, 25(4): 24-28. DOI: 10.3969/j.issn.1006-6535.2018.04.005 DING Li, WU Yubing, LIU Fenfen. Microbiological and geochemical exploration for hydrocarbon reservoirs in volcanic rocks of Zhongguai uplift[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 24-28. DOI: 10.3969/j.issn.1006-6535.2018.04.005
[13] 梅博文, 袁志华, 王修垣. 油气微生物勘探法[J]. 中国石油勘探, 2002, 7(3): 42-53. DOI: 10.3969/j.issn.1672-7703.2002.03.008 MEI Bowen, YUAN Zhihua, WANG Xiuyuan. Microbiological prospecting of oil and gas[J]. China Petroleum Exploration, 2002, 7(3): 42-53. DOI: 10.3969/j.issn.1672-7703.2002.03.008
[14] 张春林, 庞雄奇, 梅海, 等. 烃类微渗漏与宏渗漏的识别及镇巴长岭-龙王沟地区勘探实践[J]. 天然气地球科学, 2009, 20(5): 794-800. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200905028.htm ZHANG Chunlin, PANG Xiongqi, MEI Hai, et al. Identification of microseepage and exploration practice in Changling-Longwanggou area of Zhenba Block[J]. Natural Gas Geoscience, 2009, 20(5): 794-800. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200905028.htm
[15] 何丽娟, 张迎朝, 梅海, 等. 微生物地球化学勘探技术在琼东南盆地深水区陵水凹陷烃类检测中的应用[J]. 中国海上油气, 2015, 27(4): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504008.htm HE Lijuan, ZHANG Yingzhao, MEI Hai, et al. Applying microbial geochemical exploration technology for hydrocarbon detection of Lingshui sag in deep water area of Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2015, 27(4): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504008.htm
[16] SAUNDERS D F, BURSON K R, THOMPSON C K. Model for hydrocarbon microseepage and related near-surface alterations[J]. AAPG Bulletin, 1999, 83(1): 170-185. http://aapgbull.geoscienceworld.org/content/83/1/170
[17] BROWN A. Evaluation of possible gas microseepage mechanisms[J]. AAPG Bulletin, 2000, 84(11): 1775-1789.
[18] PRICE L C. A critical overview of and proposed working model for hydrocarbon microseepage[R]. United States Geological Survey, 1985. Doi: 10.3133/05585271
[19] HITZMAN D O. Prospecting for petroleum deposits. U. S2880142[P]. 1959-3-31.
[20] 刘大为, 刘天佑, 董建华. 小波多尺度分析在煤田火烧区磁法探测中的应用[J]. 煤田地质与勘探, 2005, 33(6): 61-63. DOI: 10.3969/j.issn.1001-1986.2005.06.018 LIU Dawei, LIU Tianyou, DONG Jianhua. Application of wavelet multi-scale analysis in magnetic prospecting of the burnt coal area[J]. Coal Geology & Exploration, 2005, 33(6): 61-63. DOI: 10.3969/j.issn.1001-1986.2005.06.018
[21] 李曼, 刘天佑. 煤田烧变岩非均匀磁化的二度半模型反演[J]. 煤田地] 质与勘探, 2006, 34(2): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200602018.htm LI Man, LIU Tianyou. Variable magnetization interactive inversion method by 2.5D for burnt coal[J]. Coal Geology & Exploration, 2006, 34(2): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200602018.htm
[22] 刘江, 崔江伟, 薛国强, 等. 利用高精度磁法圈定陕北地区煤层火烧边界[J]. 地球科学前沿, 2019, 9(5): 360-367. LIU Jiang, CUI Jiangwei, XUE Guoqiang, et al. Determining the spontaneous combustion boundary of northern Shaanxi coal seam using high precision magnetic method[J]. Advances in Geosciences, 2019, 9(5): 360-367.