煤基CO2地质封存对顶板裂缝导流能力影响实验研究

朱世良, 邵丽伟, 周效志, 曹煜彤, 张琨, 王建东

朱世良, 邵丽伟, 周效志, 曹煜彤, 张琨, 王建东. 煤基CO2地质封存对顶板裂缝导流能力影响实验研究[J]. 煤田地质与勘探, 2021, 49(3): 128-132, 139. DOI: 10.3969/j.issn.1001-1986.2021.03.016
引用本文: 朱世良, 邵丽伟, 周效志, 曹煜彤, 张琨, 王建东. 煤基CO2地质封存对顶板裂缝导流能力影响实验研究[J]. 煤田地质与勘探, 2021, 49(3): 128-132, 139. DOI: 10.3969/j.issn.1001-1986.2021.03.016
ZHU Shiliang, SHAO Liwei, ZHOU Xiaozhi, CAO Yutong, ZHANG Kun, WANG Jiandong. Experimental study on the influence of coal-based CO2 geological storage on roof fracture conductivity[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 128-132, 139. DOI: 10.3969/j.issn.1001-1986.2021.03.016
Citation: ZHU Shiliang, SHAO Liwei, ZHOU Xiaozhi, CAO Yutong, ZHANG Kun, WANG Jiandong. Experimental study on the influence of coal-based CO2 geological storage on roof fracture conductivity[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 128-132, 139. DOI: 10.3969/j.issn.1001-1986.2021.03.016

 

煤基CO2地质封存对顶板裂缝导流能力影响实验研究

基金项目: 

江苏省大学生创新训练计划项目 201910290286X

贵州省地勘基金项目 208-9912-JBN-UTS0

国家重点研发计划项目 2018YFB0605602-02

详细信息
    作者简介:

    朱世良, 1998年生, 男, 福建宁德人, 专业为资源勘查工程.E-mail: 1275530278@qq.com

    通讯作者:

    周效志, 1982年生, 男, 山东青州人, 博士, 副教授, 从事煤层气地质与开发工作.E-mail: cumtzxz@163.com

  • 中图分类号: P642.5

Experimental study on the influence of coal-based CO2 geological storage on roof fracture conductivity

  • 摘要: 煤基CO2地质封存是温室气体减排的重要方式,但也存在地下CO2泄露的安全风险。为了评估煤基CO2地质封存的安全性,采集沁水盆地南部胡底矿3号煤顶板泥质粉砂岩样品,模拟实验研究“CO2-H2O-岩”反应中柱状试样人工裂缝形貌、全岩矿物组成与CO2导流能力变化。结果表明:方解石脉溶蚀、次生矿物充填与外部有效应力共同影响试样裂缝导流能力。原始渗透率为0.016×10–3μm2的低渗试样,方解石脉溶蚀导致实验前期渗透率升高;随着反应进行,有效应力主导下裂缝闭合,渗透率呈“先升后降”变化趋势;原始渗透率为3.785×10–3μm2的高渗试样,H2CO3不断溶蚀裂缝壁面长石等矿物,并产生高岭石等次生矿物混合充填于裂缝中,使渗透率持续降低。煤基CO2地质封存过程中,较高的注入压力导致顶板产生人工裂缝;CO2注入施工结束后,次生矿物充填及有效应力增大使裂缝导流能力快速下降,因此,煤中封存CO2沿顶板裂缝长期泄露的风险较低。
    Abstract: Coal-based CO2 geological storage is an important way to reduce greenhouse gas emissions, but there is also a safety risk of underground CO2 leakage. In order to evaluate the safety of coal-based CO2 geological storage, the roof samples of No.3 coal seam in Hudi Coal Mine, southern Qinshui Basin were collected, and the changes of artificial fracture morphology, whole rock mineral composition and CO2 conductivity of columnar samples in "CO2-H2O-Rock" reaction were studied by simulation experiments. The results show that calcite vein dissolution, secondary mineral filling and external effective stress jointly affect the fracture conductivity. For the low permeability samples with original permeability of 0.016×10–3μm2, calcite vein dissolution leads to the increase of permeability in the early stage of the experiment. As the reaction proceeds, the fracture is closed under the guidance of effective stress, and the permeability increases first and then decreases. For the high permeability samples with original permeability of 3.785×10–3μm2, H2CO3 continuously dissolves feldspar and other minerals on the fracture wall, producing kaolinite and other secondary minerals to fill the fracture, so that the permeability continuous to decrease. In the process of CO2 geological storage, high injection pressure leads to artificial roof fracture. After the completion of CO2 injection construction, the fracture conductivity decreases rapidly due to the filling of secondary minerals and the increase of effective stress, therefore, the risk of long-term leakage of CO2 in coal along the roof fracture is relatively low.
  • 图  1   人工造缝柱状试样端面

    Fig.  1   The end face of columnar samples after artificial fracture

    图  2   “CO2-H2O-岩”反应中试样气测渗透率变化

    Fig.  2   Permeability changes of samples in the process of CO2-H2O-Rock reaction

    图  3   实验前后试样全岩矿物组成对比

    Fig.  3   Comparison of whole rock mineral composition before and after the experiment

    图  4   LY-1试样表面矿物宏微观形貌变化

    Fig.  4   Macroscopic and microscopic changes of minerals on the surface of LY-1 sample

    图  5   HY-1试样表面人工裂缝与显微裂隙形貌变化

    Fig.  5   Morphology changes of artificial fracture and micro fracture on the surface of HY-1 sample

  • [1]

    LI Qi, LIU Guizhen, CAI Bofeng, et al. Public awareness of the environmental impact and management of carbon dioxide capture, utilization and storage technology: The views of educated people in China[J]. Clean Technologies and Environmental Policy, 2017, 19(8): 2041-2056. DOI: 10.1007/s10098-017-1387-0

    [2] 范晶晶. 煤层CO2封存影响因素及数值模拟研究[D]. 北京: 中国矿业大学(北京), 2018.

    FAN Jingjing. Research on the influence factors of CO2 sequestration in coal seams and numerical simulation of CO2 sequestration process[D]. Beijing: China University of Mining and Technology(Beijing), 2018.

    [3] 郭辉, 李想, 曾云, 等. CO2驱提高煤层气开采效果注入参数的实验研究[J]. 当代化工, 2016, 45(11): 2585-2588. DOI: 10.3969/j.issn.1671-0460.2016.11.027

    GUO Hui, LI Xiang, ZENG Yun, et al. Experimental study on injection parameters for CO2 flooding to enhance the recovery of coal bed methane extraction[J]. Contemporary Chemical Industry, 2016, 45(11): 2585-2588. DOI: 10.3969/j.issn.1671-0460.2016.11.027

    [4] 喻英, 李义连, 杨国栋, 等. 储层物性参数对CO2长期封存能力的影响研究[J]. 安全与环境工程, 2017, 24(5): 75-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201705013.htm

    YU Ying, LI Yilian, YANG Guodong, et al. Influence of reservoir physical parameters on the long-term CO2 storage capacity[J]. Safety and Environmental Engineering, 2017, 24(5): 75-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201705013.htm

    [5] 金超, 曾荣树, 田兴有. 松辽盆地南部保康体系上白垩统CO2埋存条件与潜力[J]. 地球科学(中国地质大学学报), 2013, 38(6): 1229-1239. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201306007.htm

    JIN Chao, ZENG Rongshu, TIAN Xingyou. CO2 storage conditions and capacity of Upper Cretaceous Series in Baokang sedimentary system in the southwest of Songliao Basin[J]. Earth Science(Journal of China University of Geosciences), 2013, 38(6): 1229-1239. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201306007.htm

    [6]

    LI Zhaowen, DONG Mingzhe, LI Shuliang, et al. CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity[J]. Energy Conversion and Management, 2006, 47(11/12): 1372-1382. http://www.sciencedirect.com/science/article/pii/s0196890405002098

    [7] 孔维钟, 白冰, 李小春. CO2咸水层封存中组合盖层密封效果的影响因素[J]. 交通科学与工程, 2015, 31(3): 53-60. DOI: 10.3969/j.issn.1674-599X.2015.03.011

    KONG Weizhong, BAI Bing, LI Xiaochun. Factors of sealing efficiency of combined caprocks for CO2 storage in saline aquifer[J]. Journal of Transport Science and Engineering, 2015, 31(3): 53-60. DOI: 10.3969/j.issn.1674-599X.2015.03.011

    [8] 韩学婷, 张兵, 叶建平. 煤层气藏CO2-ECBM注入过程中CO2相态变化分析及应用: 以沁水盆地柿庄北区块为例[J]. 非常规油气, 2018, 5(1): 80-85. DOI: 10.3969/j.issn.2095-8471.2018.01.014

    HAN Xueting, ZHANG Bing, YE Jianping. Analysis and application of CO2 phase change during CO2-ECBM injection in CBM[J]. Unconventional Oil & Gas, 2018, 5(1): 80-85. DOI: 10.3969/j.issn.2095-8471.2018.01.014

    [9] 王登科, 魏建平, 尹光志. 复杂应力路径下含瓦斯煤渗透性变化规律研究[J]. 岩石力学与工程学报, 2012, 31(2): 303-310. DOI: 10.3969/j.issn.1000-6915.2012.02.009

    WANG Dengke, WEI Jianping, YIN Guangzhi. Investigation on change rule of permeability of coal containing gas under complex stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 303-310. DOI: 10.3969/j.issn.1000-6915.2012.02.009

    [10] 许江, 曹偈, 李波波, 等. 煤岩渗透率对孔隙压力变化响应规律的试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 225-230. DOI: 10.3969/j.issn.1000-6915.2013.02.002

    XU Jiang, CAO Jie, LI Bobo, et al. Experimental research on response law of permeability of coal to pore pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 225-230. DOI: 10.3969/j.issn.1000-6915.2013.02.002

    [11] 张凤君, 王怀远, 王广华, 等. CO2流体与储层砂岩相互作用机理实验[J]. 吉林大学学报(地球科学版), 2012, 42(3): 821-826. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203028.htm

    ZHANG Fengjun, WANG Huaiyuan, WANG Guanghua, et al. Experiment on mechanism of CO2 fluid interacting with sandstone layer[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(3): 821-826. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203028.htm

    [12] 高玉巧, 刘立, 曲希玉. CO2与砂岩相互作用机理与形成的自生矿物组合[J]. 新疆石油地质, 2007, 28(5): 579-584. DOI: 10.3969/j.issn.1001-3873.2007.05.015

    GAO Yuqiao, LIU Li, QU Xiyu. Mechanism of CO2-sandstone interaction and formative authigenic mineral assemblage[J]. Xinjiang Petroleum Geology, 2007, 28(5): 579-584. DOI: 10.3969/j.issn.1001-3873.2007.05.015

    [13] 肖娜, 李实, 林梅钦, 等. CO2-水-岩石相互作用对砂岩储集层润湿性影响机理[J]. 新疆石油地质, 2017, 38(4): 460-465. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201704015.htm

    XIAO Na, LI Shi, LIN Meiqin, et al. Influence of CO2-water-rock interactions on wettability of sandstone reservoirs[J]. Xinjiang Petroleum Geology, 2017, 38(4): 460-465. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201704015.htm

    [14]

    ZOU Yushi, LI Sihai, MA Xinfang, et al. Effects of CO2-brine-rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 157-168. DOI: 10.1016/j.jngse.2017.11.004

    [15]

    ENICK R M, KLARA S M. CO2 Solubility in water and brine under reservoir conditions[J]. Chemical Engineering Communications, 1990, 90(1): 23-33. DOI: 10.1080/00986449008940574

    [16]

    CANTUCCI B, MONTEGROSSI G, VASELLI O, et al. Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn project(Canada) case study[J]. Chemical Geology, 2009, 265(1/2): 181-197. http://www.sciencedirect.com/science/article/pii/S0009254109000035

    [17]

    RAMIRO-RAMIREZ S. Petrographic and petrophysical characterization of the Eagle Ford Shale in La Salle and Gonzales counties, Gulf Coast Region, Texas[D]. Colorado: Colorado School of Mines(Golden), 2016.

    [18] 李乐, 刘爱武, 漆智先, 等. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征[J]. 地球科学, 2020, 45(2): 602-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002019.htm

    LI Le, LIU Aiwu, QI Zhixian, et al. Pore structure characteristics of shale reservoir of the lower Qian 4 member in the Wangchang anticline of the Qianjiang sag[J]. Earth Science, 2020, 45(2): 602-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002019.htm

    [19] 胡咤咤, 黄文辉, 刘素平, 等. 沁水盆地南部煤储层显微裂隙发育的影响因素[J]. 煤田地质与勘探, 2016, 44(5): 63-70. DOI: 10.3969/j.issn.1001-1986.2016.05.012

    HU Zhazha, HUANG Wenhui, LIU Suping, et al. Study on the influencing factors of the microfracture development in coal reservoir in southern Qinshui Basin[J]. Coal Geology & Exploration, 2016, 44(5): 63-70. DOI: 10.3969/j.issn.1001-1986.2016.05.012

    [20]

    FU Hongyuan, JIANG Huangbin, QIU Xiang, et al. Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures[J]. Journal of Central South University, 2020, 27(7): 1907-1916. DOI: 10.1007/s11771-020-4419-6

    [21] 刘大锰, 周三栋, 蔡益栋, 等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术, 2017, 45(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201706001.htm

    LIU Dameng, ZHOU Sandong, CAI Yidong, et al. Study on effect of geo-stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology, 2017, 45(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201706001.htm

    [22]

    PAN Zhejun, YE Jianping, ZHOU Fubao, et al. CO2 storage in coal to enhance coalbed methane recovery: A review of field experiments in China[J]. International Geology Review, 2017, 60(4): 1-23. DOI: 10.1080/00206814.2017.1373607

图(5)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  22
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2021-01-20
  • 发布日期:  2021-06-24

目录

    /

    返回文章
    返回