负角度定向长钻孔瓦斯抽采完孔工艺研究

马赞, 陈冬冬, 解恒星, 陈天柱, 王彬, 贾秉义

马赞, 陈冬冬, 解恒星, 陈天柱, 王彬, 贾秉义. 负角度定向长钻孔瓦斯抽采完孔工艺研究[J]. 煤田地质与勘探, 2021, 49(3): 62-68. DOI: 10.3969/j.issn.1001-1986.2021.03.008
引用本文: 马赞, 陈冬冬, 解恒星, 陈天柱, 王彬, 贾秉义. 负角度定向长钻孔瓦斯抽采完孔工艺研究[J]. 煤田地质与勘探, 2021, 49(3): 62-68. DOI: 10.3969/j.issn.1001-1986.2021.03.008
MA Zan, CHEN Dongdong, XIE Hengxing, CHEN Tianzhu, WANG Bin, JIA Bingyi. Gas drainage borehole completion technology of directional long hole drilling with negative angle[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 62-68. DOI: 10.3969/j.issn.1001-1986.2021.03.008
Citation: MA Zan, CHEN Dongdong, XIE Hengxing, CHEN Tianzhu, WANG Bin, JIA Bingyi. Gas drainage borehole completion technology of directional long hole drilling with negative angle[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 62-68. DOI: 10.3969/j.issn.1001-1986.2021.03.008

 

负角度定向长钻孔瓦斯抽采完孔工艺研究

基金项目: 

国家科技重大专项任务 2016ZX05045-002-002

中煤科工集团西安研究院有限公司科技创新基金项目 2019XAYMS18

中煤科工集团西安研究院有限公司科技创新基金项目 218XAYZD10

详细信息
    作者简介:

    马赞, 1988年生, 男, 山东兖州人, 工程师, 从事矿井瓦斯灾害预测与防治工作.E-mail: zanyuan2012@163.com

    通讯作者:

    王彬, 1991年生, 男, 陕西铜川人, 硕士, 从事矿井地质和矿井瓦斯综合防治工作.E-mail: wangbin3@cctegxian.com

  • 中图分类号: TD712.6

Gas drainage borehole completion technology of directional long hole drilling with negative angle

  • 摘要: 定向长钻孔预抽煤层瓦斯是实现煤矿瓦斯区域超前治理的有效技术手段,受采掘部署影响,负角度钻孔(下向孔)在生产中应用广泛。中硬煤层成孔性好、通常无需护孔,但针对负角度长钻孔积水问题,现有常规方法均无法有效解决。以贵州龙凤煤矿9号中硬煤层下向长钻孔为研究对象,在同一区域施工2组定向长钻孔,钻孔平均倾角–8°,钻孔孔深240~363 m、垂深40.0 m,对比分析了长距离、大垂深定向长钻孔护孔和未护孔2种完孔工艺的瓦斯抽采效果差异。结果表明:在抽采前期,采取护孔工艺的负角度定向长钻孔平均瓦斯抽采量为2.09 m3/min,未采取护孔工艺的为1.87 m3/min,二者差别不大;但护孔工艺定向长钻孔瓦斯抽采量衰减系数是未护孔的61.54%,以抽采400 d为例,护孔工艺定向长钻孔瓦斯抽采总量是未护孔的1.40倍;经理论计算,采取筛管护孔工艺钻场抽采达标时间比未护孔钻场缩短了157 d。从长期抽采效果来看,在缺乏有效排水措施的前提下,采取护孔工艺能够有效提高负角度定向长钻孔的瓦斯抽采效果。
    Abstract: Pre-drainage of coal seam gas with directional long boreholes is an effective technical means to achieve advanced control of coal mine gas area. Affected by mining deployment, negative-angle boreholes(downward holes) are widely used in production. Medium-hard coal seams have good porosity and usually do not require hole protection. However, the existing conventional methods can not effectively solve the problem of water accumulation in negative angle long boreholes. This paper takes the downward long boreholes in the No. 9 medium-hard coal seam of Longfeng Coal Mine in Guizhou as the research object. Two sets of directional long boreholes are constructed in the same area. The average inclination of the boreholes is –8°, and the borehole depth is 240-363 m, with vertical depth of –40.0 m. This paper compares and analyzes the difference in gas drainage effect between protected and unprotected long directional boreholes with long-distance and large vertical depth. The results show that in the early stage of drainage, with the negative angle orientation of the protection hole technology adopted, the average gas drainage volume of long boreholes is 2.09 m3/min, and 1.87 m3/min without hole protection technology. There is little difference between the two technologies. But the attenuation coefficient of gas drainage volume in directional long boreholes with protection technology is 61.54% of the unprotected holes. Taking 400 days of drainage as an example, the total amount of gas drainage from the directional long borehole with the hole protection technology is 1.40 times that of the unprotected hole. Theoretical calculations show that the time required for the drilling site to meet the standards by adopting the screen pipe protection technology is 157 days shorter than that of the unprotected drilling site. From the perspective of long-term drainage effect, in the absence of effective water drainage measures, the adoption of hole protection technology can effectively improve the gas drainage effect of negative-angle directional long boreholes.
  • 图  1   未下入护孔筛管定向钻孔瓦斯运移趋势

    Fig.  1   Trend of gas migration in directional drilling holes without protective screen pipe

    图  2   下入护孔筛管定向钻孔瓦斯运移趋势

    Fig.  2   Trend of gas migration in directional drilling holes with protective pipe

    图  3   工作面掘进区域负角度定向长钻孔布置

    Fig.  3   Arrangement of the directional long boreholes with negative angle in the heading area of working face

    图  4   回风斜井钻场定向长钻孔实钻轨迹剖面(以1号孔为例)

    Fig.  4   The actual drilling trajectory of the directional long borehole at the return air inclined well drilling site(No.1 bore hole)

    图  5   未护孔工艺负角度定向长钻孔瓦斯抽采量变化曲线

    Fig.  5   Variation curves of gas drainage volume of negative-angle directional long borehole with unprotected hole technology

    图  6   筛管护孔工艺负角度定向长钻孔瓦斯抽采量变化曲线

    Fig.  6   Nariation curves of gas drainage volume of negative angle directional drilling long boreholes with screen pipe protection

    图  7   筛管钻孔与未护孔定向钻孔百米抽采总量对比

    Fig.  7   Comparison of the extraction volume of 100 m between screen pipe protected and unprotected directional boreholes

    表  1   回风斜井钻场定向长钻孔实钻轨迹参数

    Table  1   Parameters of actual drilling trajectory of directional long borehole in return air inclined well drilling site

    孔号 主孔深度/m 分支孔/个 总进尺/m
    1 306 3 417
    2 306 306
    3 330 2 447
    4 306 1 561
    5 303 303
    6 315 315
    7 318 1 450
    总进尺 2 799
    下载: 导出CSV

    表  2   轨道1号联巷钻场定向长钻孔实钻轨迹参数

    Table  2   Parameters of actual drilling trajectory for directional long boreholes in the track No.1 joint drilling site

    孔号 主孔深度/m 分支孔/个 总进尺/m 护孔筛管深度/m 下筛管方式
    1 360 360 360 大通孔螺旋钻杆下筛管
    2 360 360 350 大通孔螺旋钻杆下筛管
    3 360 360 360 大通孔螺旋钻杆下筛管
    4 360 1 411 120 裸孔人工推送下筛管
    5 363 2 483 112 裸孔人工推送下筛管
    6 360 2 531 120 裸孔人工推送下筛管
    7 240 3 381 108 裸孔人工推送下筛管
    下载: 导出CSV
  • [1] 袁亮, 林柏泉, 杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术, 2015, 43(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501013.htm

    YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015, 43(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501013.htm

    [2] 程远平, 俞启香, 周红星, 等. 煤矿瓦斯治理"先抽后采"的实践与作用[J]. 采矿与安全工程学报, 2006, 23(4): 389-392. DOI: 10.3969/j.issn.1673-3363.2006.04.003

    CHENG Yuanping, YU Qixiang, ZHOU Hongxing, et al. Practice and effectiveness of "draining gas before coal mining" to prevent gas from bursting[J]. Journal of Mining & Safety Engineering, 2006, 23(4): 389-392. DOI: 10.3969/j.issn.1673-3363.2006.04.003

    [3] 陈冬冬, 孙四清, 张俭, 等. 井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J]. 煤炭科学技术, 2020, 48(10): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202010009.htm

    CHEN Dongdong, SUN Siqing, ZHANG Jian, et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202010009.htm

    [4] 郝世俊, 段会军, 莫海涛, 等. 大直径高位定向长钻孔瓦斯抽采技术及实践[J]. 煤田地质与勘探, 2020, 48(6): 243-248. DOI: 10.3969/j.issn.1001-1986.2020.06.032

    HAO Shijun, DUAN Huijun, MO Haitao, et al. Gas drainage technology and practice analysis of large diameter high position directional long borehole[J]. Coal Geology & Exploration, 2020, 48(6): 243-248. DOI: 10.3969/j.issn.1001-1986.2020.06.032

    [5] 王文彬, 张军义, 王露. 煤层顶板裂隙高位定向长钻孔安全高效抽采技术的研究与应用[J]. 能源与环保, 2020, 42(12): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202012014.htm

    WANG Wenbin, ZHANG Junyi, WANG Lu. Research and application of safe and high-efficiency drainage technology with high-level directional long holes in coal roof cracks[J]. China Energy and Environmental Protection, 2020, 42(12): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202012014.htm

    [6] 赵继展. 松软煤层底板定向长钻瓦斯抽采技术实践[J]. 煤矿安全, 2015, 46(8): 111-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201508033.htm

    ZHAO Jizhan. Practice of gas drainage technology by long directional drilling in floor of soft seam[J]. Safety in Coal Mines, 2015, 46(8): 111-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201508033.htm

    [7] 陈勇. 管路积水对瓦斯抽采效果影响的试验研究及防治对策[J]. 煤矿开采, 2017, 22(4): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201704027.htm

    CHEN Yong. Experimental study and prevention of pipeline water to gas drainage effect[J]. Coal Mining Technology, 2017, 22(4): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201704027.htm

    [8] 曹学军, 周琛朋, 马权, 等. 井下瓦斯抽采管路防治水工作探讨[J]. 煤矿现代化, 2010(2): 83-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MKXD201002049.htm

    CAO Xuejun, ZHOU Chenpeng, MA Quan, et al. Discussion on water control work of underground gas extraction pipeline[J]. Coal Mine Modernization, 2010(2): 83-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MKXD201002049.htm

    [9] 齐黎明, 张旭锟, 王国玺. 含水率对钻孔裂隙发育的影响[J]. 华北科技学院学报, 2018, 15(1): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ201801007.htm

    QI Liming, ZHANG Xukun, WANG Guoxi. Study on the law of drilling fracture development of different water content briquettes[J]. Journal of North China Institute of Science and Technology, 2018, 15(1): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ201801007.htm

    [10] 崔国宏. 定向钻孔在高瓦斯掘进面过富水区的应用分析[J]. 煤矿现代化, 2019(2): 163-165. https://www.cnki.com.cn/Article/CJFDTOTAL-MKXD201902124.htm

    CUI Guohong. Application analysis of directional drilling in excessive water area of high gas heading face[J]. Coal Mine Modernization, 2019(2): 163-165. https://www.cnki.com.cn/Article/CJFDTOTAL-MKXD201902124.htm

    [11] 鲜保安, 王力, 张晓斌, 等. 双管柱筛管完井技术在沁水煤层气区块水平井开发中的应用[J]. 油气藏评价与开发, 2020, 10(4): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202004010.htm

    XIAN Bao'an, WANG Li, ZHANG Xiaobin, et al. Application of double-string screen completion in horizontal wells of Qinshui CBM block[J]. Reservoir Evaluation and Development, 2020, 10(4): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202004010.htm

    [12] 张杰, 王毅, 黄寒静. 软煤气动螺杆钻具定向钻进技术与装备[J]. 煤田地质与勘探, 2020, 48(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202002007.htm

    ZHANG Jie, WANG Yi, HUANG Hanjing. Directional drilling technology and equipment of pneumatic screw motor in soft seam[J]. Coal Geology & Exploration, 2020, 48(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202002007.htm

    [13] 刘清泉, 童碧, 方有向, 等. 松软煤层快速全孔筛管护孔高效瓦斯抽采技术[J]. 煤炭科学技术, 2014, 42(12): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201412016.htm

    LIU Qingquan, TONG Bi, FANG Youxiang, et al. High efficient gas drainage technology with fast full length screen pipe for borehole protection in soft seam[J]. Coal Science and Technology, 2014, 42(12): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201412016.htm

    [14] 张金宝, 王毅, 姚宁平, 等. 煤矿井下护孔筛管煤粉颗粒通过性分析及抽采效果试验[J]. 煤炭学报, 2020, 45(7): 2500-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007018.htm

    ZHANG Jinbao, WANG Yi, YAO Ningping, et al. Analysis of coal particles passing screen pipe and test of gas drainage effect in underground coal mine[J]. Journal of China Coal Society, 2020, 45(7): 2500-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007018.htm

    [15] 王宠惠. 松软煤层全长筛管护孔及带压封孔技术研究[D]. 焦作: 河南理工大学, 2015.

    WANG Chonghui. The research on a total length of screen guard and hole sealing technology with pressure in soft coal seam[D]. Jiaozuo: Henan Polytechnic University, 2015.

    [16]

    CLERX L E, ROCKWELL F E, SAVAGE J A, et al. Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in Quercus rubra[J]. Botany, 2020, 107(6): 852-863. DOI: 10.1002/ajb2.1481

    [17] 杨睿月, 黄中伟, 李根生, 等. 煤层气水平井割缝筛管优化设计[J]. 煤炭学报, 2014, 39(11): 2269-2275. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201411021.htm

    YANG Ruiyue, HUANG Zhongwei, LI Gensheng, et al. Optimization design for the geometry parameters of slotted liner in coalbed methane horizontal wells[J]. Journal of China Coal Society, 2014, 39(11): 2269-2275. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201411021.htm

    [18] 周鑫隆, 柏发松, 石必明, 等. 下向穿层钻孔条带预抽瓦斯技术研究[J]. 中国安全生产科学技术, 2014, 10(12): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201412032.htm

    ZHOU Xinlong, BO Fasong, SHI Biming, et al. Study on technology of strip gas pre-drainage with downward crossing boreholes[J]. Journal of Safety Science and Technology, 2014, 10(12): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201412032.htm

    [19] 王苏健, 冯洁, 侯恩科, 等. 砂岩微观孔隙结构类型及其对含水层富水性的影响: 以柠条塔井田为例[J]. 煤炭学报, 2020, 45(9): 3236-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009021.htm

    WANG Sujian, FENG Jie, HOU Enke, et al. Microscopic pore structure types of sandstone and its effects on aquifer water abundance: Taking in Ningtiaota coal mine as an example[J]. Journal of China Coal Society, 2020, 45(9): 3236-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009021.htm

    [20] 侯恩科, 范继超, 谢晓深, 等. 基于微震监测的深埋煤层顶板导水裂隙带发育特征[J]. 煤田地质与勘探, 2020, 48(5): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202005011.htm

    HOU Enke, FAN Jichao, XIE Xiaoshen, et al. Development characteristics of water-conducting fractured zone in deep coal seam based on microseismic monitoring[J]. Coal Geology & Exploration, 2020, 48(5): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202005011.htm

图(7)  /  表(2)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  50
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 修回日期:  2021-02-21
  • 发布日期:  2021-06-24

目录

    /

    返回文章
    返回