准格尔煤田特厚煤层开采底板破坏特征综合测试研究

张平松, 刘畅, 欧元超, 孙斌杨, 许时昂, 李圣林

张平松, 刘畅, 欧元超, 孙斌杨, 许时昂, 李圣林. 准格尔煤田特厚煤层开采底板破坏特征综合测试研究[J]. 煤田地质与勘探, 2021, 49(1): 263-269. DOI: 10.3969/j.issn.1001-1986.2021.01.029
引用本文: 张平松, 刘畅, 欧元超, 孙斌杨, 许时昂, 李圣林. 准格尔煤田特厚煤层开采底板破坏特征综合测试研究[J]. 煤田地质与勘探, 2021, 49(1): 263-269. DOI: 10.3969/j.issn.1001-1986.2021.01.029
ZHANG Pingsong, LIU Chang, OU Yuanchao, SUN Binyang, XU Shi'ang, LI Shenglin. Comprehensive testing research on floor damage characteristics of mining extra-thick seam in Jungar Coalfield[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 263-269. DOI: 10.3969/j.issn.1001-1986.2021.01.029
Citation: ZHANG Pingsong, LIU Chang, OU Yuanchao, SUN Binyang, XU Shi'ang, LI Shenglin. Comprehensive testing research on floor damage characteristics of mining extra-thick seam in Jungar Coalfield[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 263-269. DOI: 10.3969/j.issn.1001-1986.2021.01.029

 

准格尔煤田特厚煤层开采底板破坏特征综合测试研究

基金项目: 

国家自然科学基金项目(41877268);安徽省重点研发计划项目(1804a0802213)

详细信息
    作者简介:

    张平松,1971年生,男,安徽六安人,博士,教授,博士生导师,从事地质工程及地球物理方面的研究.E-mail:pszhang@sohu.com

  • 中图分类号: TD163

Comprehensive testing research on floor damage characteristics of mining extra-thick seam in Jungar Coalfield

  • 摘要: 鄂尔多斯盆地准格尔煤田某矿石炭-二叠系6煤层为特厚煤层,平均可采厚度17.0 m,其底板受到灰岩水的威胁。针对这种情况,现场采用分布式光纤传感及跨孔电阻率CT原位综合测试技术,先后获得了采动过程中多个工作面底板破坏应变场及地电场响应特征数据。结合岩样加载变形破坏的判别阈值参数及探测实践,对采区内4个工作面底板测试数据进行综合分析,获得了区内底板岩层破坏空间特征及其规律认识。分析认为底板破坏在垂向上具有明显的分带性,采区工作面底板破坏深度在7.2~16.5 m,主要破坏层位在细砂岩以上层段,扰动影响最大深度在33 m左右,主要扰动层位在砂质泥岩以上层段;底板破坏在横向上具有超前性,超前距离在25~60 m范围;区内工作面底板破坏特征具有一定的相似性,动压影响下的底板损伤程度在空间上呈东北区域浅、西南区域深的分布规律。原位测试所获得的数据对区内6煤层水害防治及安全开采具有指导作用。
    Abstract: The 6th coal seam of the Carboniferous Permian in a coal mine in the Ordos Basin of Inner Mongolia is an extra-thick coal seam with an average minable thickness of 17.0 m. Its floor is threatened by limestone water. Distributed sensing optical fiber technology and cross-hole resistivity CT in situ comprehensive testing technology were used in the field, and the response characteristics of strain field and geoelectric field were obtained successively during mining. Combined with the threshold value of the discriminant parameter for loading deformation and failure of rock samples and detection section of practice, the monitoring data of the floor of four working faces in the mining area are analyzed comprehensively, and the detailed characteristics and evolution distribution law of the floor failure in the area are obtained. The floor failure has obvious zonation in vertical direction. It is believed that the floor failure depth of the working face in the mining area is 7.2-16.5 m, and the main damage layer is in the fine sandstone interval. The destructive disturbance zone is approximately 33 m deep, mainly in the sandy mudstone interval. The failure of the soleplate has a transverse leading stress effect, and the leading influence distance varies from 25 to 60 m. In addition, the damage characteristics of the floor in the study area are similar to a certain extent. The damage degree of floor caused by mining is spatially distributed in shallow areas in the northeast and deep areas in the southwest. The data obtained from the on-site test has a guiding role for the safe mining of the 6th coal seam in the deep part of the area and the prevention of water hazard.
  • [1] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277-2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277-2284.

    [2] 高延法,李白英. 受奥灰承压水威胁煤层采场底板变形破坏规律研究[J]. 煤炭学报,1992,17(2):32-39.

    GAO Yanfa,LI Baiying. Investigation of rules of floor rock failure in the workings with risk of Ordovician confined water[J]. Journal of China Coal Society,1992,17(2):32-39.

    [3] 段宏飞. 采动过程中煤层底板破坏特征及破坏深度分析[J]. 煤炭科学技术,2014,42(5):17-20.

    DUAN Hongfei. Analysis on failure features and failure depth of coal seam floor during mining process[J]. Coal Science and Technology,2014,42(5):17-20.

    [4] 王连国,毕善军,宋扬. 底板变形破坏规律的数值模拟研究[J]. 矿山压力与顶板管理,2004,21(4):35-37.

    WANG Lianguo,BI Shanjun,SONG Yang. Numerical simulation of deformation and failure law of floor[J]. Ground Pressure and Strata Control,2004,21(4):35-37.

    [5] 王一栋,姜振泉,朱术云,等. 特厚煤层采动底板变形破坏的数值模拟与实测对比[J]. 煤矿安全,2012,43(10):39-41.

    WANG Yidong,JIANG Zhenquan,ZHU Shuyun,et al. Contrast of numerical simulation and field measurement on deformation and failure in thick seam mining floor[J]. Safety in Coal Mines,2012,43(10):39-41.

    [6] 弓培林,胡耀青,赵阳升,等. 带压开采底板变形破坏规律的三维相似模拟研究[J]. 岩石力学与工程学报,2005,24(23):4396-4402.

    GONG Peilin,HU Yaoqing,ZHAO Yangsheng,et al. Three-dimensional simulation study on law of deformation and breakage of coal floor on mining above aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(23):4396-4402.

    [7] 高召宁,孟祥瑞. 采动条件下煤层底板变形破坏特征研究[J]. 矿业安全与环保,2010,37(3):17-20.

    GAO Zhaoning,MENG Xiangrui. Study on deformation and failuring characteristics of seam floor under mining influence[J]. Mining Safety & Environmental Protection,2010,37(3):17-20.

    [8] 付宝杰,涂敏,程桦. 承压水上厚煤层底板变形破坏特征实验研究[J]. 地下空间与工程学报,2017,13(增刊1):107-112.

    FU Baojie,TU Min,CHENG Hua. Deformation and failure characteristics research on thick seam mining floor above confined water[J]. Chinese Journal of Underground Space and Engineering,2017,13(Sup.1):107-112.

    [9] 许延春,杨扬. 大埋深煤层底板破坏深度统计公式及适用性分析[J]. 煤炭科学技术,2013,41(9):129-132.

    XU Yanchun,YANG Yang. Applicability analysis on statistical formula for failure depth of coal seam floor in deep mine[J]. Coal Science and Technology,2013,41(9):129-132.

    [10] 段宏飞,姜振泉,张蕊,等. 杨村煤矿综采条件下薄煤层底板破坏深度的实测与模拟研究[J]. 煤炭学报,2011,36(增刊1):13-17.

    DUAN Hongfei,JIANG Zhenquan,ZHANG Rui,et al. Field measurement and simulation research on failure depth of fully mechanized thin coal seam floor in Yangcun Coal Mine[J]. Journal of China Coal Society,2011,36(Sup.1):13-17.

    [11] 朱术云,曹丁涛,岳尊彩,等. 特厚煤层综放采动底板变形破坏规律的综合实测[J]. 岩土工程学报,2012,34(10):1931-1938.

    ZHU Shuyun,CAO Dingtao,YUE Zuncai,et al. Comprehensive measurement of characteristics of deformation and failure of extra-thick coal seam floor induced by fully mechanized top-coal mining[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1931-1938.

    [12] 段宏飞,姜振泉,朱术云,等. 综采薄煤层采动底板变形破坏规律实测分析[J]. 采矿与安全工程学报,2011,28(3):407-414.

    DUAN Hongfei,JIANG Zhenquan,ZHU Shuyun,et al. Measurement of mining-induced floor failure regularity for thin coal seams using fully mechanized coal caving[J]. Journal of Mining and Safety Engineering,2011,28(3):407-414.

    [13] 张蕊,姜振泉,岳尊彩,等. 采动条件下厚煤层底板破坏规律动态监测及数值模拟研究[J]. 采矿与安全工程学报,2012,29(5):625-630.

    ZHANG Rui,JIANG Zhenquan,YUE Zuncai,et al. In-situ dynamic observation and numerical analysis of thick coal seam floor's failure law under the mining[J]. Journal of Mining and Safety Engineering,2012,29(5):625-630.

    [14] 朱术云,鞠远江,赵振中,等. 超化煤矿"三软"煤层采动底板变形破坏的实测研究[J]. 岩土工程学报,2009,31(4):639-642.

    ZHU Shuyun,JU Yuanjiang,ZHAO Zhenzhong,et al. Field measurement study on deformation and destruction of "three-soft" coal seam floor of Chaohua Coal Mine[J]. Chinese Journal of Geotechnical Engineering,2009,31(4):639-642.

    [15] 程学丰,刘盛东,刘登宪. 煤层采后围岩破坏规律的声波CT探测[J]. 煤炭学报,2001,26(2):153-155.

    CHENG Xuefeng,LIU Shengdong,LIU Dengxian. Sound-wave CT detection for failure patterns of surrounding rock after mining[J]. Journal of China Coal Society,2001,26(2):153-155.

    [16] 高召宁,孟祥瑞,赵光明. 煤层底板变形与破坏规律直流电阻率CT探测[J]. 重庆大学学报(自然科学版),2011,34(8):90-96.

    GAO Zhaoning,MENG Xiangrui,ZHAO Guangming. DC electrical resistivity CT survey of deformation and damage law of coal floor[J]. Journal of Chongqing University(Natural Science Edition),2011,34(8):90-96.

    [17] 张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012,33(3):952-956.

    ZHANG Pingsong,HU Xiongwu,WU Rongxin. Study of detection system of distortion and collapsing of top rock by resistivity method in working face[J]. Rock and Soil Mechanics,2012,33(3):952-956.

    [18] 张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870-1875.

    ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface by 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870-1875.

    [19] 张平松,鲁海峰,韩必武,等. 采动条件下断层构造的变形特征实测与分析[J]. 采矿与安全工程学报,2019,36(2):351-356.

    ZHANG Pingsong,LU Haifeng,HAN Biwu,et al. Monitoring and analysis of deformation characteristics of fault structure under mining condition[J]. Journal of Mining and Safety Engineering,2019,36(2):351-356.

    [20] 张平松,许时昂,郭立全,等. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术,2020,48(3):14-35.

    ZHANG Pingsong,XU Shi'ang,GUO Liquan,et al. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology,2020,48(3):14-35.

    [21] 程爱民,孔皖军. 定向钻进技术在唐家会矿水害防治中的应用[J]. 煤炭与化工,2019,42(5):56-59.

    CHENG Aimin,KONG Wanjun. Application of directional drilling technology in prevention and control of water disaster in Tangjiahui Mine[J]. Coal and Chemical Industry,2019,42(5):56-59.

    [22] 张平松,翟恩发,程爱民,等. 深厚煤层开采底板变形特征的光纤监测研究[J]. 地下空间与工程学报,2019,15(4):1197-1203.

    ZHANG Pingsong,ZHAI Enfa,CHENG Aimin,et al. Optical fiber monitoring study on characteristics of deformation in floor of deep and thick coal seam during mining[J]. Chinese Journal of Underground Space and Engineering,2019,15(4):1197-1203.

    [23] 陈磊,詹跃东,田庆生. 基于BOTDR分布式传感系统的研究[J]. 仪表技术与传感器,2019(6):96-100.

    CHEN Lei,ZHAN Yuedong,TIAN Qingsheng. Research on BOTDR distributed sensing system[J]. Instrument Technique and Sensor,2019(6):96-100.

    [24]

    XU Shi'ang,WANG Shuangming,ZHANG Pingsong,et al. Study on strain characterization and failure location of rock fracture process using distributed optical fiber under uniaxial compression[J]. Sensors,2020,20(14):3853.

    [25] 刘盛东,张平松. 分布式并行智能电极电位差信号采集方法和系统:ZL200410014020.0[P]. 2005-05-18.

    LIU Shengdong,ZHANG Pingsong. Distributed parallel intelligent electrode potential difference signal acquisition method and system:ZL200410014020.0[P]. 2005-05-18.

    [26] 郑晓亮,刘盛东. 基于双处理器的并行采集网络电法仪器的设计[J]. 煤炭科学技术,2008,36(4):85-88.

    ZHENG Xiaoliang,LIU Shengdong. Design on parallel collection network electrical instrument base on double processorss[J]. Coal Science and Technology,2008,36(4):85-88.

    [27] 刘盛东,刘静,戚俊,等. 矿井并行电法技术体系与新进展[J]. 煤炭学报,2019,44(8):2336-2345.

    LIU Shengdong,LIU Jing,QI Jun,et al. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society,2019,44(8):2336-2345.

    [28] 钱鸣高,石平武,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010:188-190.

    QIAN Minggao,SHI Pingwu,XU Jialin. Mining pressure and strata control[M].Xuzhou:China University of Mining and Technology Press,2010:188-190.

  • 期刊类型引用(14)

    1. 张平松,刘畅. 煤系砂岩受载破裂全程多尺度多参数测试及表征. 中国矿业大学学报. 2025(01): 172-185 . 百度学术
    2. 赵峰. 孙家沟煤矿深厚煤层开采底板变形特征综合研究. 山东煤炭科技. 2025(02): 120-124+130 . 百度学术
    3. 毛怀勇,韩磊,左红飞,苏文,刘科峰,王应政,苗葳. 担水沟煤矿特厚煤层开采底板导水破坏带深度实测研究. 煤炭与化工. 2024(05): 31-37 . 百度学术
    4. 丁序海,张侯,陈录平,党国杰. 基于多频无线电坑透技术的煤矿地质综合勘探研究. 能源与环保. 2024(06): 82-87 . 百度学术
    5. 鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究. 工矿自动化. 2023(01): 36-45+108 . 百度学术
    6. 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考. 煤炭学报. 2023(01): 1-14 . 百度学术
    7. 孟亚周,张钦,闫扬帆. 倾斜不稳定煤层采动工作面底板破坏深度研究. 煤炭技术. 2023(03): 85-90 . 百度学术
    8. 姚多喜,刘畅. 煤层采动底板变形破坏过程多参数精细感知方法研究. 煤炭科学技术. 2023(07): 44-52 . 百度学术
    9. 张玉军,张风达,张志巍,孙林,李友伟. 采动煤层底板层次性破坏特征全空间多参量协同监测. 煤炭科学技术. 2022(02): 86-94 . 百度学术
    10. 李刚,刘海振,杨庆贺,牛伟锋. 带压开采煤层底板破坏特征与突水风险分析. 中国安全科学学报. 2022(05): 68-76 . 百度学术
    11. 王程,安又新,朱宏军,郭建磊. 孔中瞬变电磁法在综放工作面底板破坏深度探测中的应用研究. 煤田地质与勘探. 2022(07): 79-84 . 本站查看
    12. 孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望. 工程地质学报. 2021(04): 985-1001 . 百度学术
    13. 杨海平,刘盛东,杨彩,章俊. 煤层顶底板采动破坏同步动态监测电性特征分析. 工程地质学报. 2021(04): 1002-1009 . 百度学术
    14. 高银贵,孔皖军,陈永春,薛贤明,郑刘根,常成林,姜春露,国伟,雷锋,王刚. 特厚煤层综放开采下工作面底板岩层破坏特征. 能源环境保护. 2021(06): 68-75 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  96
  • HTML全文浏览量:  8
  • PDF下载量:  24
  • 被引次数: 17
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2021-01-24
  • 发布日期:  2021-02-24

目录

    /

    返回文章
    返回