Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability
-
摘要: 针对黄陇侏罗纪煤田中硬煤层渗透性差、瓦斯抽采浓度及流量衰减速度快等问题,利用自主研发的水力压裂成套工艺设备,提出煤层定向长钻孔水力压裂瓦斯高效抽采技术,并在黄陇煤田黄陵二号煤矿进行工程应用试验。现场共完成5个定向长钻孔钻探施工,单孔孔深240~285 m,总进尺1 320 m;采用整体压裂工艺对5个本煤层钻孔进行压裂施工,累计压裂液用量1 557.5 m3,单孔最大泵注压力19 MPa;压裂后单孔瓦斯抽采浓度及百米抽采纯量分别提升0.7~20.5倍、1.7~9.8倍;相比于普通钻孔,压裂孔瓦斯初始涌出强度提升2.1倍,钻孔瓦斯流量衰减系数降低39.6%。试验结果表明:采取水力压裂增透措施后,瓦斯抽采效果得到显著提升,煤层瓦斯可抽采性增加,为类似矿区低渗煤层瓦斯高效抽采提供了技术支撑。Abstract: Aiming at the problems such as poor permeability of coal seams and fast attenuation of gas extraction concentration and flow rate in Jurassic coalfield of Huanglong, the complete set of independently developed hydraulic fracturing equipment was used, the high-efficiency gas extraction technology of directional long borehole hydraulic fracturing of coal seams was put forward, the engineering application test was carried out in Huangling No.2 coal mine in Huanglong coalfield. Five directional long boreholes were drilled. The depth of single borehole was 240~285 m and the total footage was of 1 320 m. The integrated fracturing process was used to fracture coal seams in five boreholes. The cumulative amount of fracturing fluid was 1 557.5 m3, and the maximum pumping pressure for the single borehole was 19MPa. After fracturing, the gas extraction concentration and the drainage quantity per 100 m were increased by 0.7-20.5 times and 1.7-9.8 times respectively. Compared with ordinary boreholes, the initial gas-gushing strength of the fractured borehole was increased by 2.1 times, and the attenuation coefficient of gas flow of the boreholes was reduced by 39.6%. The test results show that the gas extraction effect can be significantly improved and the coal seam drainage ability can be increased after adopting the permeability improvement measures of hydraulic fracturing, providing technical support for the high-efficiency gas extraction of low-permeability coal seam in similar mining areas.
-
-
[1] 卢平,袁亮,程桦,等. 低透气性煤层群高瓦斯采煤工作面强化抽采卸压瓦斯机理及试验[J]. 煤炭学报,2010,35(4):580-585. LU Ping,YUAN Liang,CHENG Hua,et al. Theory and experimental studies of enhanced gas drainage in the high-gas face of low permeability coal multi-seams[J]. Journal of China Coal Society,2010,35(4):580-585.
[2] 张东明,白鑫,尹光志,等. 低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J]. 煤炭学报,2018,43(7):1938-1950. ZHANG Dongming,BAI Xin,YIN Guangzhi,et al. Research and application on technology of increased permeability by liquid CO2 phase change directional jet fracturing in low-permeability coal seam[J]. Journal of China Coal Society,2018,43(7):1938-1950.
[3] 郭启文,韩炜,张文勇,等. 煤矿井下水力压裂增透抽采机理及应用研究[J]. 煤炭科学技术,2011,39(12):60-64. GUO Qiwen,HAN Wei,ZHANG Wenyong,et al. Study on mechanism and application of hydraulic fracturing and permeability improvement gas drainage in underground mine[J]. Coal Science and Technology,2011,39(12):60-64.
[4] 徐刚,金洪伟,李树刚,等. 不同坚固性系数f值煤渗透率分布特征及其井下水力压裂适用性分析[J]. 西安科技大学学报,2019,39(3):443-451. XU Gang,JIN Hongwei,LI Shugang,et al. Distribution characteristics of coal seam permeability with different solidity coefficient f and applicability analysis of hydraulic fracturing of underground coal mine[J]. Journal of Xi'an University of Science and Technology,2019,39(3):443-451.
[5] 周红星,王亮,程远平,等. 低透气性强突出煤层瓦斯抽采导流通道的构建及应用[J]. 煤炭学报,2012,37(9):1456-1460. ZHOU Hongxing,WANG Liang,CHENG Yuanping,et al. Guide channel construction for gas drainage and its applications in coal seams with low permeability and strong burst-pronenees[J]. Journal of China Coal Society,2012,37(9):1456-1460.
[6] 王耀锋,何学秋,王恩元,等. 水力化煤层增透技术研究进展及发展趋势[J]. 煤炭学报,2014,39(10):1945-1955. WANG Yaofeng,HE Xueqiu,WANG Enyuan,et al. Research progress and development tendency of the hydraulic technology for increasing the permeability of coal seams[J]. Journal of China Coal Society,2014,39(10):1945-1955.
[7] 郑凯歌. 碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J]. 采矿与安全工程学报,2020,37(2):272-281. ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining and Safety Engineering,2020,37(2):272-281.
[8] 贾进章,葛佳琪,甄纹浩,等. 水力压裂增透技术及应用研究[J]. 中国安全科学学报,2020,30(10):63-68. JIA Jinzhang,GE Jiaqi,ZHEN Wenhao,et al. Research and application of anti-reflection technology of hydraulic fracturing[J]. China Safety Science Journal,2020,30(10):63-68.
[9] 孙四清,张群,闫志铭,等. 碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J]. 煤炭学报,2017,42(9):2337-2344. SUN Siqing,ZHANG Qun,YAN Zhiming,et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society,2017,42(9):2337-2344.
[10] 李国栋,郑凯歌,陈冬冬. 赵固二矿本煤层定向长钻孔水力压裂增透技术研究[J]. 煤炭工程,2019,51(7):53-57. LI Guodong,ZHENG Kaige,CHEN Dongdong. Study on permeability enhancement technology through overall hydraulic fracturing of long directional hole in Zhaogu No.2 Coal Mine mining coal seam[J]. Coal Engineering,2019,51(7):53-57.
[11] 王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17-21. WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration,2018,46(4):17-21.
[12] 杨俊哲,郑凯歌. 厚煤层综放开采覆岩动力灾害原理及防治技术[J]. 采矿与安全工程学报,2020,37(4):750-758. YANG Junzhe,ZHENG Kaige. The mechanism of overburden dynamic disasters and its control technology in top-coal caving in the mining of thick coal seams[J]. Journal of Mining and Safety Engineering,2020,37(4):750-758.
[13] 王广宏. 定向长钻孔水力压裂增渗技术预抽煤巷条带瓦斯的应用研究[J]. 能源与环保,2019,41(7):25-28. WANG Guanghong. Application study of directional long borehole hydraulic fracturing and permeability enhancement technology for pre-drainage gas in coal roadway[J]. China Energy and Environmental Protection,2019,41(7):25-28.
[14] 方鹏,田宏亮,邬迪,等. ZDY6000LD(A)型履带式全液压定向钻机及其应用[J]. 煤田地质与勘探,2011,39(2):74-77. FANG Peng,TIAN Hongliang,WU Di,et al. Development and application of the track-mounted ZDY6000LD(A) hydraulic directional drilling rig[J]. Coal Geology & Exploration,2011,39(2):74-77.
[15] 陶云奇,刘东,许江,等. 大尺寸复杂应力水力压裂裂缝扩展模拟试验研究[J]. 采矿与安全工程学报,2019,36(2):405-412. TAO Yunqi,LIU Dong,XU Jiang,et al. Experimental study on hydraulic fracturing propagation in coal/rock with large size and complex stress[J]. Journal of Mining and Safety Engineering,2019,36(2):405-412.
[16] 徐涛,冯文军,苏现波. 煤矿井下水力压冲增透强化抽采技术试验研究[J]. 西安科技大学学报,2015,35(3):303-306. XU Tao,FENG Wenjun,SU Xianbo. Experimental research on enhanced gas extraction application with hydraulic fracturing and flushing[J]. Journal of Xi'an University of Science and Technolgy,2015,35(3):303-306.
[17] 秦玉金,苏伟伟,田富超,等. 煤层注水微观效应研究现状及发展方向[J]. 中国矿业大学学报,2020,49(3):428-444. QIN Yujin,SU Weiwei,TIAN Fuchao,et al. Research status and development direction of microcosmic effect under coal seam water injection[J]. Journal of China University of Mining & Technology,2020,49(3):428-444.
-
期刊类型引用(14)
1. 黄庆享,王雨凡,杜君武,郭强,范东林,王生彪,高锦龙. 浅埋大断面运输顺槽锚索替代单体超前加强支护研究. 西安科技大学学报. 2025(01): 12-25 . 百度学术
2. 王亮. 小回沟矿2204工作面运输巷变形特征与优化支护技术分析. 煤. 2024(06): 95-97 . 百度学术
3. 王凤翔. 掘进巷道过断层破碎带联合支护技术研究. 山西化工. 2024(05): 197-198 . 百度学术
4. 张运国,魏恒一. 承压含水层上巷道掘进过断层安全性分析与评价. 山东煤炭科技. 2024(06): 118-122 . 百度学术
5. 刘春记. 回风巷过断层破碎带围岩控制技术研究. 煤炭与化工. 2024(06): 45-48 . 百度学术
6. 张新蕾. 基于岩体力学参数的巷道锚杆支护应力数值模拟. 粉煤灰综合利用. 2023(02): 39-43 . 百度学术
7. 王丹. 深部过断层巷道围岩支护技术研究. 山西能源学院学报. 2023(02): 13-15 . 百度学术
8. 邵东阁. 回采巷道掘进过含水断层施工及支护技术研究. 山西能源学院学报. 2023(02): 7-9 . 百度学术
9. 张文杰,何满潮,王炯,马资敏,程满江,牛韶坤. 逆断层影响下无煤柱自成巷矿压规律及围岩控制. 煤田地质与勘探. 2023(05): 1-10 . 本站查看
10. 刘云鹤. 42202工作面皮带巷过F_215逆断层技术实践. 机械管理开发. 2021(01): 176-178 . 百度学术
11. 李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望. 煤炭学报. 2021(03): 846-866 . 百度学术
12. 吴建红. 复杂地质条件下掘进巷道支护参数优化研究及应用. 煤矿现代化. 2021(03): 10-12 . 百度学术
13. 丁万奇,马振乾,祖自银,谢红飞,杨威,陈川. 基于分形维数的巷道围岩裂隙演化规律研究. 煤田地质与勘探. 2021(03): 167-174 . 本站查看
14. 苏朋. 巷道掘进过断层破碎带支护技术研究. 机械管理开发. 2021(10): 193-194 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 159
- HTML全文浏览量: 20
- PDF下载量: 20
- 被引次数: 18