保德煤矿奥陶纪灰岩水水化学特征及形成机理

张泽源, 许峰, 王世东, 刘其声

张泽源, 许峰, 王世东, 刘其声. 保德煤矿奥陶纪灰岩水水化学特征及形成机理[J]. 煤田地质与勘探, 2020, 48(5): 81-88. DOI: 10.3969/j.issn.1001-1986.2020.05.010
引用本文: 张泽源, 许峰, 王世东, 刘其声. 保德煤矿奥陶纪灰岩水水化学特征及形成机理[J]. 煤田地质与勘探, 2020, 48(5): 81-88. DOI: 10.3969/j.issn.1001-1986.2020.05.010
ZHANG Zeyuan, XU Feng, WANG Shidong, LIU Qisheng. Hydrochemical characteristics and formation mechanism of Ordovician limestone water in Baode coal mine[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 81-88. DOI: 10.3969/j.issn.1001-1986.2020.05.010
Citation: ZHANG Zeyuan, XU Feng, WANG Shidong, LIU Qisheng. Hydrochemical characteristics and formation mechanism of Ordovician limestone water in Baode coal mine[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 81-88. DOI: 10.3969/j.issn.1001-1986.2020.05.010

 

保德煤矿奥陶纪灰岩水水化学特征及形成机理

基金项目: 

国家重点研发计划项目(2017YFC0804100)

详细信息
    作者简介:

    张泽源,1995年生,男,陕西西安人,硕士,从事煤矿水害防治方面的研究工作.E-mail:zhangzeyuan923@126.com

    通讯作者:

    许峰,1986年生,男,江苏句容人,博士,副研究员,从事煤矿水害防治方面的研究工作.E-mail:348279155@qq.com

  • 中图分类号: P641

Hydrochemical characteristics and formation mechanism of Ordovician limestone water in Baode coal mine

Funds: 

National Key R&D Program of China(2017YFC0804100)

  • 摘要: 奥陶纪灰岩(简称奥灰)水是保德煤矿煤层开采的主要威胁水源,且为主要供水水源之一。为研究保德煤矿奥灰水水化学特征,并分析其形成机理,对保德煤矿区奥灰水进行系统取样,综合运用相关性分析、离子比例系数、饱和指数反演、氯碱指数等方法进行分析。研究结果表明:奥灰水的水质类型从径流区到滞流区呈HCO3-Na(Na·Ca)→HCO3·Cl-Na·Ca(Ca·Mg)→Cl-Na(Na·Ca)的变化趋势,各离子质量浓度与TDS值呈线性关系,除HCO3-外,其余离子质量浓度均与TDS值呈正相关;阳离子交替吸附、BSR反应、溶滤沉析作用是控制矿区地下水化学环境的主要作用。根据饱和指数(SI)计算及路径模拟结果证实,径流区方解石、白云石和石膏大量溶解,滞流区出现白云石沉淀,石膏始终处于不饱和状态,趋于发生溶解。该结论可为保德煤矿深部煤炭开采水害防治与矿井水利用提供依据。
    Abstract: Ordovician limestone karst water is the main threatening water source for mining activities in Baode coal mine, and it is one of the main water supply sources. Ordovician limestone karst water samples were systematically collected in Baode coal mine, and the methods of correlation analysis, ion proportional coefficient, saturation index inversion simulation and Chlor-Alkali index were chosen to analyze the hydrochemical characteristics and its formation mechanism. The results showed that the water quality types of Ordovician limestone water changed from runoff zone to stagnant zone in a trend of HCO3-Na(Na·Ca)→HCO3·Cl-Na·Ca(Ca·Mg)→Cl-Na(Na·Ca). The mass concentration of each ion was linearly related to TDS value, and positively correlated with TDS except for HCO3-. Cationic alternating adsorption, BSR and solution filtration were the main function to control the hydrogeochemical environment of groundwater in the coal mine. According to the saturation index(SI) calculation and simulation path, it was confirmed that calcite, dolomite and gypsum was dissolved in runoff zone, dolomite precipitation occured in stagnant zone, gypsum was always in unsaturated state and tended to dissolve. This conclusion would provide a basis for the prevention and control of water damage in deep coal mining and the utilization of mine water in Baode coal mine.
  • [1] 姜体胜,曲辞晓,王明玉,等. 北京平谷平原区浅层地下水化学特征及成因分析[J]. 干旱区资源与环境,2017,31(11):122-127.

    JIANG Tisheng,QU Cixiao,WANG Mingyu,et al. Hydrochemical characteristics of shallow groundwater and the origin in the Pinggu plain,Beijing[J]. Journal of Arid Land Resources and Environment,2017,31(11):122-127.

    [2] 王广才,陶澍,沈照理,等. 平顶山矿区岩溶水系统水-岩相互作用的随机水文地球化学模拟[J]. 水文地质工程地质,2000,27(3):9-12.

    WANG Guangcai,TAO Shu,SHEN Zhaoli,et al. Modeling and assessment on water-mineral reactions of karst groundwater system by stochastic hydrogeochemistry model at Pingdingshan coalfield[J]. Hydrogeology & Engineering Geology,2000,27(3):9-12.

    [3] 潘玥,刘勇,曾献奎,等. 徐州东部废弃矿井地下水流场演化模拟研究[J]. 水文地质工程地质,2017,44(2):52-56.

    PAN Yue,LIU Yong,ZENG Xiankui,et al. Numerical simulation of groundwater flow field evolution in abandoned mine in the east Xuzhou[J]. Hydrogeology & Engineering Geology,2017,44(2):52-56.

    [4] 潘玥,刘勇,徐红霞,等. 徐州东部废弃矿井地下水化学及其时空演化特征分析[J]. 高校地质学报,2018,24(2):257-262.

    PAN Yue,LIU Yong,XU Hongxia,et al. Characteristics of groundwater chemistry and its spatio-temporal variation in abandoned mine in eastern Xuzhou[J]. Geological Journal of China Universities,2018,24(2):257-262.

    [5] 李培月,吴健华,钱会. 内蒙古东胜煤田阿不亥普查区地下水水质评价及水化学形成机制[J]. 水资源与水工程学报,2010,21(1):38-41.

    LI Peiyue,WU Jianhua,QIAN Hui. Groundwater quality assessment and the forming mechanism of the hydro-chemistry in Dongsheng coalfield of Inner Mongolia[J]. Journal of Water Resources & Water Engineering,2010,21(1):38-41.

    [6] 张乐中,曹海东.利用水化学特征识别桑树坪煤矿突水水源[J].煤田地质与勘探,2013,41(4):42-45.

    ZHANG Lezhong,CAO Haidong. Distinguishing the sources of water inrush in Sangshuping coal mine by hydrochemical characteristics[J]. Coal Geology & Exploration,2013,41(4):42-45.

    [7] 李建林,昝明军,韩乐.矿井突水水源判别方法与应用[J].河南理工大学学报(自然科学版),2014,33(5):590-594.

    LI Jianlin,ZAN Mingjun,HAN Le. Application on methods for distinguishing sources of mine water-invasion[J]. Journal of Henan Polytechnic University(Natural Science),2014,33(5):590-594.

    [8] 马荣,石建省. 模糊因子分析在地下水污染评估中的应用:以河南省洛阳市为例[J]. 地球学报,2011,32(5):611-622.

    MA Rong,SHI Jiansheng. Assessing groundwater pollution using fuzzy factor analysis method:A case study of Luoyang City in Henan Province[J]. Acta Geoscientica Sinica,2011,32(5):611-622.

    [9] 杨志磊,孟祥瑞,王向前,等. 基于GA-BP网络模型的煤矿底板突水非线性预测评价[J]. 煤矿安全,2013,44(2):36-39.

    YANG Zhilei,MENG Xiangrui,WANG Xiangqian,et al. Nonlinear prediction and evaluation of coal mine floor water inrush based on GA-BP neural network model[J]. Safety in Coal Mines,2013,44(2):36-39.

    [10] 黄平华,陈建生,宁超.焦作矿区地下水中氢氧同位素分析[J].煤炭学报,2012,37(5):770-775.

    HUANG Pinghua,CHEN Jiansheng,NING Chao. The analysis of hydrogen and oxygen isotopes in the ground water of Jiaozuo mine area[J]. Journal of China Coal Society,2012,37(5):770-775.

    [11]

    ENGELHARDT I,PIEPENBRINK M,TRAUTH N,et al. Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone[J]. Journal of Hydrology(Amsterdam),2011,400(1/2):255-266.

    [12]

    WU Qiang,WANG Mingyu. Characterization of water bursting and discharge into underground mines with multilayered groundwater flow systems in the North China coal basin[J].Hydrogeology Journal,2006,14(6):882-893.

    [13] 张翠云,张胜,马琳娜,等. 污灌区地下水硝酸盐污染来源的氮同位素示踪[J]. 地球科学,2012,37(2):350-356.

    ZHANG Cuiyun,ZHANG Sheng,MA Linna,et al. Nitrogen isotope tracing of sources of nitrate contamination in groundwater from wastewater irrigated area[J]. Earth Science,2012,37(2):350-356.

    [14] 翟远征,王金生,左锐,等. 地下水年龄在地下水研究中的应用研究进展[J]. 地球与环境,2011,39(1):113-120.

    ZHAI Yuanzheng,WANG Jinsheng,ZUO Rui,et al. Progress in applications of groundwater ages in groundwater research[J]. Earth and Environment,2011,39(1):113-120.

    [15] 罗安昆,李瑾,杨建,等. 煤炭开采对干旱半干旱地区地下水资源的影响[J]. 煤矿安全,2018,49(12):216-220.

    LUO Ankun,LI Jin,YANG Jian,et al. Influence of coal mining on underground water resources in arid and semiarid region[J]. Safety in Coal Mines,2018,49(12):216-220.

    [16] 张泽源,侯昕悦,王世东,等. 保德煤矿奥陶纪灰岩水H2S形成机理及防治技术[J]. 煤矿安全,2020,51(5):203-207.

    ZHANG Zeyuan,HOU Xinyue,WANG Shidong,et al. Formation mechanism and prevention technology of H2S in Ordovician limestone water in Baode coal mine[J]. Safety in Coal Mines,2020,51(5):203-207.

    [17] 濮文虹,刘光虹,喻俊芳. 水质分析化学[M]. 武汉:华中科技大学出版社,2004.

    PU Wenhong,LIU Guanghong,YU Junfang. Analytical chemistry of water quality[M]. Wuhan:Huazhong University of Science & Technology Press,2004.

    [18]

    EDMUNDS W M,CARRILLORIVERA J J,CARDONA A. Geochemical evolution of groundwater beneath Mexico City[J]. Journal of Hydrology,2002,258(1/2/3/4):1-24.

    [19]

    ETTAZARINI S. Processes of water-rock interaction in the Turonian aquifer of Oum Er-Rabia basin,Morocco[J]. Environmental Geology,2005,49(2):293-299.

    [20]

    WANG Yanxin,GUO Qinghai,SU Chunli,et al. Strontium isotope characterization and major ion geochemistry of karst water flow,Shentou,northern China[J]. Journal of Hydrology,2006,328(3/4):592-603.

    [21]

    SOUMYA B S,SEKHAR M,RIOTTE J,et al. Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granite-gneissic watershed:Mule Hole,South India[J]. Geoderma,2011,165(1):12-24.

    [22]

    ZHU Bingqi,WANG Xunming,RIOUAL P. Multivariate indicators between environment and ground water recharge in a sedimentary drainage basin in northwestern China[J]. Journal of Hydrology,2017,549:92-113.

  • 期刊类型引用(7)

    1. 张鹏飞,张仲达,邱贻博,高阳,刘辰宇,赵兰全. 华北地区煤系地层油气资源研究现状及启示. 油气地质与采收率. 2024(04): 96-111 . 百度学术
    2. 苏云,李令喜,孟凡冰,李传强,邓明霞,侯东濮,姚欣雨. 东濮凹陷上古生界甜点储层地震预测技术. 断块油气田. 2022(02): 157-163 . 百度学术
    3. 徐银波,毕彩芹,李锋,张家强,仝立华. 三塘湖盆地石头梅地区巴油页1井二叠系芦草沟组有机相分析. 煤炭学报. 2022(11): 4094-4104 . 百度学术
    4. 余继峰,胡晓珂,吴孟韩,彭君,贾斌锋,王亚东,刘天娇. 东濮凹陷上古生界石千峰组致密砂岩储层特征. 中国煤炭地质. 2021(02): 25-29+34 . 百度学术
    5. 王亚东,余继峰,刘天娇,胡晓珂,彭君,贾斌锋. 东濮凹陷上二叠统致密砂岩储层成岩相及孔隙演化. 东北石油大学学报. 2021(02): 79-91+10 . 百度学术
    6. 高航. 东濮凹陷潜山致密砂岩储层成岩演化特征. 断块油气田. 2021(03): 295-299+317 . 百度学术
    7. 王学军,周勇水,李红磊,贾斌峰,张莹莹. 渤海湾盆地东濮凹陷上古生界烃源岩成烃特征及成藏意义. 石油实验地质. 2021(04): 678-688 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  173
  • HTML全文浏览量:  67
  • PDF下载量:  26
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-10-17
  • 修回日期:  2020-07-19
  • 发布日期:  2020-10-24

目录

    /

    返回文章
    返回