基于分段波形互相关的井下随采地震数据成像

张唤兰, 王保利

张唤兰, 王保利. 基于分段波形互相关的井下随采地震数据成像[J]. 煤田地质与勘探, 2020, 48(4): 29-33,40. DOI: 10.3969/j.issn.1001-1986.2020.04.004
引用本文: 张唤兰, 王保利. 基于分段波形互相关的井下随采地震数据成像[J]. 煤田地质与勘探, 2020, 48(4): 29-33,40. DOI: 10.3969/j.issn.1001-1986.2020.04.004
ZHANG Huanlan, WANG Baoli. Waveform cross correlation-based imaging of underground seismic data while mining[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 29-33,40. DOI: 10.3969/j.issn.1001-1986.2020.04.004
Citation: ZHANG Huanlan, WANG Baoli. Waveform cross correlation-based imaging of underground seismic data while mining[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 29-33,40. DOI: 10.3969/j.issn.1001-1986.2020.04.004

 

基于分段波形互相关的井下随采地震数据成像

基金项目: 

陕西省自然科学基础研究计划项目(2020JQ-741,2020JM-714);国家自然科学基金青年科学基金项目(51808444)

详细信息
    作者简介:

    张唤兰,1981年生,女,山西兴县人,博士,讲师,从事地震数据处理方法研究及微地震监测方法研究.E-mail:zhanghl_amy5257@163.com

  • 中图分类号: P631.4

Waveform cross correlation-based imaging of underground seismic data while mining

Funds: 

Natural Science Basic Research Plan of Shaanxi Province, China(2020JQ-741, 2020JM-714)

  • 摘要: 随采地震勘探是以采煤机为震源的被动地震探测技术,由于采煤机是不断移动的、且其激发的是一种连续信号,因此常规数据处理方法无法直接应用。提出分段波形互相关方法,通过将采煤机产生的数据分段,采用互相关方法提取有效信号的走时,然后利用速度层析成像方法对工作面内部和切眼前方进行速度成像。利用波动方程对含异常体的工作面模型进行随采地震数值模拟,反演得到的成像结果和速度模型基本吻合;实际随采地震数据测试中,利用该方法对采煤机震源数据反演得到采动过程中地震波传播速度的成像结果,实现了对工作面内应力异常变化区域的实时动态监测。研究结果表明:基于分段互相关成像方法能解决采煤机震源信号处理问题,满足随采地震勘探技术实时性和稳定性的要求。
    Abstract: Seismics while mining is a passive seismic detection technique using a shearer as seismic source. Because the shearer moves unceasingly and excites the continuous signals, the conventional data processing method cannot be applied directly. In the paper a cross-correlation method of segmented waveform was put forward, the effective signal travel time was extracted through the segmentation of the data generated the shear, and then the velocity imaging method was used to image the interior of the working face and the front of the cutting hole. The wave equation was used to carry out the seismics while mining numerical simulation of the working face containing a abnormal body. The imaging results from the inversion were basically consistent with the velocity model. In the actual seismics while mining data test, this method is used to get the imaging results of the seismic wave propagation velocity obtained from the inversion of the data of the shear source during mining, so as to realize the real-time dynamic monitoring of an area of the abnormal variation in the working face. The results indicate that the cross-correlation imaging method based on the segmentation can solve the problems in the data processing of the signals of the shear source, meet the requirements of real-time and stability of seismics while mining technology.
  • [1]

    BUCHANAN D J,MASON I M,DAVIS R. The coal cutter as a seismic source in channel wave exploration[J]. IEEE Transactions on Geoscience and Remote Sensing,1980,GE-18(4):318-320.

    [2]

    WESTMAN E C,HARAMY K Y,ROCK A D. Seismic tomography for longwall stress analysis[C]//International Conference on ground control in mining. Golden,CO(United States),1996:397-403.

    [3]

    WESTMAN E,HEASLEY K,SWANSON P,et al. A correlation between seismic tomography,seismic events and support pressure[C]//Symposium on rock mechanics. Washington DC,2001:319-326.

    [4]

    LU Bin,CHENG Jianyuan,HU Jiwu,et al. Seismic features of vibration induced by mining machines and feasibility to be seismic source[J]. Procedia Earth and Planetary Science,2011,3:76-85.

    [5]

    PETRONIO L,POLETTO F. Seismic-while-drilling by using tunnel boring machine noise[J]. Geophysics,2002,67(6):1798-1809.

    [6]

    LUO X,KING A,WERKEN van de M. Sensing roof conditions ahead of a longwall mining using the shearer as a seismic source[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(4):17-20.

    [7]

    LUO X,KING A,WERKEN van de M. Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source:A feasibility study[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3671-3678.

    [8]

    KING A,LUO X. Methodology for tomographic imaging ahead of mining using the shearer as a seismic source[J]. Geophysics,2009,74(2):m1-m8.

    [9] 陆斌,程建远,胡继武,等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报,2013,38(12):2202-2207.

    LU Bin,CHENG Jianyuan,HU Jiwu,et al. Shearer source signal extraction and preliminary application[J]. Journal of China Coal Society,2013,38(12):2202-2207.

    [10] 陆斌. 基于地震干涉的煤矿回采工作面随采地震成像方法[J]. 煤田地质与勘探,2016,44(6):142-147.

    LU Bin. A seismic while mining method of coal working-face based on seismic interferometry[J]. Coal Geology & Exploration,2016,44(6):142-147.

    [11] 覃思,程建远. 煤矿井下随采地震反射波勘探试验研究[J]. 煤炭科学技术,2015,43(1):116-119.

    QIN Si,CHENG Jianyuan. Experimental study on seismic while mining for underground coal mine reflection survey[J]. Coal Science and Technology,2015,43(1):116-119.

    [12] 覃思. 随采地震井-地联合超前探测的试验研究[J]. 煤田地质与勘探,2016,44(6):148-151.

    QIN Si. Underground-surface combined seismic while mining advance detection[J]. Coal Geology & Exploration,2016,44(6):148-151.

    [13] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1-9.

    CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1-9.

    [14] 金丹. 综采工作面随采地震的采煤机震源模拟[J]. 煤田地质与勘探,2019,47(3):15-19.

    JIN Dan. Simulation of seismic-while-mining with shearer as source of fully mechanized mining face[J]. Coal Geology & Exploration,2019,47(3):15-19.

    [15] 段建华,王云宏,王保利. 随采地震监测数据采集控制软件开发[J]. 煤田地质与勘探,2019,47(3):35-40.

    DUAN Jianhua,WANG Yunhong,WANG Baoli. Development of data acquisition and control software for seismic monitoring with mining[J]. Coal Geology & Exploration,2019,47(3):35-40.

    [16] 王保利. 随采地震数据处理软件开发与应用[J]. 煤田地质与勘探,2019,47(3):29-34.

    WANG Baoli. Development and application of software in seismic while mining data processing[J]. Coal Geology & Exploration,2019,47(3):29-34.

    [17] 覃思,崔伟雄,王伟. 随采地震数据质量定量评价[J]. 煤田地质与勘探,2019,47(3):20-24.

    QIN Si,CUI Weixiong,WANG Wei. Quantitative quality evaluation of seismic-while-mining data[J]. Coal Geology & Exploration,2019,47(3):20-24.

    [18] 刘强. 随采地震噪声衰减研究[J]. 煤田地质与勘探,2019,47(3):25-28.

    LIU Qiang. Study on noise attenuation of seismic while mining[J]. Coal Geology & Exploration,2019,47(3):25-28.

    [19] 陆斌. 基于孔间地震细分动态探测的透明工作面方法[J]. 煤田地质与勘探,2019,47(3):10-14.

    LU Bin. Method of transparent working face based on dynamic detection of cross hole seismic subdivision[J]. Coal Geology & Exploration,2019,47(3):10-14.

    [20] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285-2295.

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.

  • 期刊类型引用(10)

    1. 王勃,徐凤银,金雪,王立龙,屈争辉,张文胜,李志,刘国伟,张艺腾,史鸣剑. 沁水盆地郑庄区块煤层气井产出水化学成分演变及其高产响应. 石油学报. 2024(11): 1638-1651 . 百度学术
    2. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 . 百度学术
    3. 简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 . 百度学术
    4. 梁运培,李左媛,朱拴成,陈强,王鑫,秦朝中. 关闭/废弃煤矿甲烷排放研究现状及减排对策. 煤炭学报. 2023(04): 1645-1660 . 百度学术
    5. 华明国,田林,张燕,李佳,曹永恒. 潞安矿区煤层气井产出水地球化学特征及意义. 煤田地质与勘探. 2022(02): 65-71 . 本站查看
    6. 吴金刚,毛俊睿. 中国废弃煤矿瓦斯资源评价与抽采利用研究进展. 煤矿安全. 2021(07): 162-169 . 百度学术
    7. 刘建华,王生维,张晓飞. 顺煤层井煤屑录井法在废弃矿区二次开发中的应用研究. 煤炭技术. 2021(09): 11-14 . 百度学术
    8. 李忠城,吴建光,王建中,吴翔,卢国军. 沁水盆地南部15号煤层和顶板K_2灰岩水文地球化学演化特征. 煤田地质与勘探. 2020(03): 75-80 . 本站查看
    9. 马凯,马钱钱,史永涛. 远红外作用下不同含水率煤体吸附/解吸能量变化规律. 煤田地质与勘探. 2020(03): 86-92 . 本站查看
    10. 王相业,孙保平. 鄂尔多斯盆地兴县地区煤层气地球化学特征及成因. 煤田地质与勘探. 2020(04): 156-164+173 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  151
  • HTML全文浏览量:  21
  • PDF下载量:  18
  • 被引次数: 19
出版历程
  • 收稿日期:  2020-04-14
  • 修回日期:  2020-06-16
  • 发布日期:  2020-08-24

目录

    /

    返回文章
    返回