Development characteristics of water conducted fracture zone based on overburden structural effect
-
摘要: 为探讨黄陇煤田煤层采动引起的顶板水害问题,以煤层顶板不同覆岩结构采动导水裂隙为研究对象,概化了煤-软-硬-软-硬(组合一)、煤-软-软-硬-硬(组合二)、煤-硬-软-硬-软(组合三)及煤-硬-硬-软-软(组合四)4种典型的岩性组合结构,运用数值模拟和理论计算等方法,分析了不同覆岩组合采动破坏特征和覆岩导水裂隙与覆岩结构之间的相关关系,研究了覆岩结构对导水裂隙发育高度(简称“导高”)的影响规律。研究结果显示:在相同的采高条件下,煤-软-硬-软-硬型覆岩结构导高最小,煤-硬-硬-软-软型覆岩结构导高最大;工程实例表明,黄陇煤田煤层开采导高与采高之间并非简单线性关系,利用覆岩结构效应预测的导高更接近实测值。Abstract: In order to study the roof water disaster caused by coal mining in Huanglong coalfield, taking mining failure of layered overburden as research object, four typical composite structural models for coal-soft rock-hard rock-soft rock-hard rock(combination I), coal-soft rock-soft rock-hard rock-hard rock(combination Ⅱ), coal-hard rock-soft rock-hard rock-soft rock(combination Ⅲ) and coal-hard rock-hard rock-soft rock-soft rock(combination IV) were generalized. Numerical simulation and theoretical calculation were used to analyze the mining failure characteristics of different overburden combinations and correlation between water conducting fissures and lithologic combination structure of overburden. The law of the effect of overburden structure on the development height of water conducting fracture was studied. The research results show that under the same mining height, the coal-soft rock-hard rock-soft rock-hard rock overburden structure has the minimum conducting height and the coal- hard rock-hard rock-soft rock-soft rock overburden structure has the maximum conducting height.The engineering examples show that the conducting height of the coal seam mining in Huanglong coalfield is not a simple linear relationship with the mining height, and the guiding height predicted by the overburden structure effect is closer to the measured value.
-
-
[1] 虎维岳. 矿山水害防治理论与方法[M]. 北京:煤炭工业出版社,2005. HU Weiyue. Theory and method of mine water disaster prevention and control[M]. Beijing:China Coal Industry Publishing House,2005.
[2] 虎维岳. 深部煤炭开采地质安全保障技术现状与研究方向[J]. 煤炭科学技术,2013,41(8):1-5. HU Weiyue. Study orientation and present status of geological guarantee technologies to deep mine coal mining[J]. Coal Science and Technology,2013,41(8):1-5.
[3] 董书宁. 煤矿安全高效生产地质保障技术现状与展望[J]. 煤炭科学技术,2007,35(3):1-5. DONG Shuning. Current situation and prospect of coal mine geological guarantee technologies to improve safety and efficiency[J]. Coal Science and Technology,2007,35(3):1-5.
[4] 曹海东. 煤层开采覆岩离层水体致灾机理与防控技术研究[D]. 北京:煤炭科学研究总院,2018. CAO Haidong. Study on prevention & control technology and disaster-caused mechanism of bed separation water body in overburden strata during coal seam mining[D]. Beijing:China Coal Research Institute,2018. [5] 武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京:煤炭工业出版社,2013. WU Qiang,ZHAO Suqi,DONG Shuning,et al. Prevention and control of coal mines[M]. Beijing:China Coal Industry Publishing House,2013.
[6] 张有喜. 厚表土层下富水顶板特厚煤层集约化开采关键技术与实践[D]. 徐州:中国矿业大学,2014. ZHANG Youxi. Key technologies and practice on the intensive mining of extra-thick coal seam under water-rich roofs and thick overburden[D]. Xuzhou:China University of Mining and Technology,2014. [7] 于水. 含水层下特厚煤层综放开采覆岩破坏规律研究[D]. 西安:西安科技大学,2012. YU Shui. Research on special thick coal seam overburden broken rule in fully mechanized caving under aquifer[D]. Xi'an:Xi'an University of Science and Technology,2012.
[8] 刘洋. 西部浅埋矿区水沙溃涌灾害防控关键技术研究[M]. 徐州:中国矿业大学出版社,2016. LIU Yang. Research on the fundamental theory and disasters prevention-control of water-sand inrush in shallowly buried coal seam[M]. Xuzhou:China University of Mining and Technology Press,2016. [9] 刘英锋,王新. 黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J]. 西安科技大学学报,2013,33(4):431-435. LIU Yingfeng,WANG Xin. Water hazard prevention and control in Huanglong Jurassic coalfield[J]. Journal of Xi'an University of Science and Technology,2013,33(4):431-435.
[10] 李超峰,虎维岳,王云宏,等. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探,2018,46(1):101-107. LI Chaofeng,HU Weiyue,WANG Yunhong,et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration,2018,46(1):101-107.
[11] 靳德武,刘英锋,刘再斌,等. 煤矿重大突水灾害防治技术研究新进展[J]. 煤炭科学技术,2013,41(1):25-29. JIN Dewu,LIU Yingfeng,LIU Zaibin,et al. New progress in prevention and control technology of major water inrush disasters in coal mines[J]. Coal Science and Technology,2013,41(1):25-29.
[12] 刘世奇. 厚煤层开采覆岩破坏规律及粘土隔水层采动失稳机理研究[D]. 北京:中国矿业大学(北京),2016. LIU Shiqi. The law of the overburden failure in thick coal seam mining and instability criterion of the clay aquiclude under the influence of mining[D]. Beijing:China University of Mining and Technology(Beijing),2016.
[13] 国家安全监管总局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M]. 北京:煤炭工业出版社,2017. State Administration of Security. Code for coal pillar reservation and pressure coal mining of buildings,water bodies,railways and main shafts[M]. Beijing:China Coal Industry Publishing House,2017.
[14] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762-769. XU Jialin,ZHU Weibing,WANG Xiaozhen. New method topredict the height of fractured water conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762-769.
[15] 许家林,钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报,2000,29(5):463-467. XU Jialin,QIAN Minggao. Method to distinguish key strata in overburden[J]. Journal of China University of Mining & Technology,2000,29(5):463-467.
[16] 许家林,朱卫兵,王晓振,等. 浅埋煤层覆岩关键层结构分类[J]. 煤炭学报,2009,34(7):865-870. XU Jialin,ZHU Weibing,WANG Xiaozhen,et al. Classification of key strata structure of overlying strata in shallow coal seam[J]. Journal of China Coal Society,2009,34(7):865-870.
[17] 杨贵. 综放开采导水裂隙带高度及预测方法研究[D]. 青岛:山东科技大学(青岛),2004. YANG Gui. Study on the height of water flowing fractured zone and prediction method in fully mechanized sub-level caving[D]. Qingdao:Shandong University of Science and Technology(Qingdao),2004. [18] 王惠兵,高荣斌,毛增民. 软弱覆岩的两类结构模式及对导水裂缝带高度的抑制性[J]. 能源技术与管理,2009(3):10-12. WANG Huibing,GAO Rongbin,MAO Zengmin. Models of two kinds weak strata structure and inhibition to height of water flowing fractured zone[J]. Energy Technology and Management,2009(3):10-12.
[19] 康永华. 覆岩性质对"两带"高度的影响[J]. 煤矿开采,1998,3(1):52-54. KANG Yonghua. The effect of overburden strata characteristics on heights of the fractured and caved zones[J]. Coal Mining Technology,1998,3(1):52-54.
[20] 许延春,李俊成,刘世奇,等. 综放开采覆岩"两带"高度的计算公式及适用性分析[J]. 煤矿开采,2011,16(2):4-7. XU Yanchun,LI Juncheng,LIU Shiqi,et al. Calculation formula of "two-zone" height of overlying strata and its adaptability analysis[J]. Coal Mining Technology,2011,16(2):4-7.
-
期刊类型引用(23)
1. 徐东晶,张瑞庆,高卫富,姜浩楠,朱海锋,李业,夏志村. 华北型煤田不同覆岩类型下导水裂隙带高度分区预测研究. 煤田地质与勘探. 2025(03): 177-189 . 本站查看
2. 张玉军,李友伟,肖杰,张志巍,李嘉伟. 坚硬覆岩预裂弱化改性效应及导水裂缝带控制机理. 煤炭科学技术. 2024(04): 105-118 . 百度学术
3. 闫和平,李文平,段中会,杨玉贵. 黄陇煤田典型特厚煤层综放开采涌水机理与导水裂隙带发育规律. 煤田地质与勘探. 2024(05): 129-138 . 本站查看
4. 张勃阳,张宇科,黄虎威,林志斌,李亚超. 基于相似模拟试验的顶板导水裂隙带高度及发育形态研究. 河南理工大学学报(自然科学版). 2024(04): 29-38 . 百度学术
5. 李春元. 深部原生煤岩组合体三轴压缩破裂特征与失稳模式. 煤田地质与勘探. 2024(08): 111-123 . 本站查看
6. 孙谭婷,贾亮亮,王力,潘远飞,晏世荣,余江. 基于多因素的崩塌发育规律与成因分析——以某山区崩塌为例. 价值工程. 2024(33): 103-106 . 百度学术
7. 李建彪. 金谷煤矿地表水害防治技术研究. 煤矿现代化. 2023(02): 84-87+91 . 百度学术
8. 高正. 曹家滩煤矿导水裂隙带高度确定及水害防治. 陕西煤炭. 2023(04): 196-199 . 百度学术
9. 马红卫. 台格庙矿区基岩孔隙裂隙发育规律及富水性分区研究. 煤. 2023(12): 27-31+40 . 百度学术
10. 程磊,罗辉,李辉,张玥. 近年来煤矿采动覆岩导水裂隙带的发育高度的研究进展. 科学技术与工程. 2022(01): 28-38 . 百度学术
11. 王庆涛,邵红旗. 深部条带开采覆岩和煤柱综合探测及破坏特征. 煤炭技术. 2022(01): 78-82 . 百度学术
12. 王泓博,张勇,庞义辉,张春雷. 基于地表点下沉阶段特征的覆岩裂隙带高度演化. 中国矿业大学学报. 2022(01): 24-34 . 百度学术
13. 杨深,郭世达,翟俊杰,刘莉. 基于覆岩结构的近距离煤层顶板导高发育规律探究. 内蒙古煤炭经济. 2022(04): 4-6 . 百度学术
14. 张玉军,申晨辉,张志巍,李友伟. 我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律. 煤炭科学技术. 2022(05): 38-48 . 百度学术
15. 马金飞,范永平,温兆翠. 下组煤层工作面导水裂隙带发育特征研究. 煤炭科技. 2022(04): 152-156 . 百度学术
16. 王双明,魏江波,宋世杰,王生全,孙涛. 黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议. 煤田地质与勘探. 2022(12): 1-11 . 本站查看
17. 王有建,涂敏. 特厚煤层开采顶板突水危险性预测及防治措施. 中国矿业. 2021(04): 109-114 . 百度学术
18. 郝钢,王飞,王永文,贺志宏,刘斌,申龙. 裂缝带顺层长钻孔瓦斯抽采技术研究. 中国煤炭. 2021(04): 59-64 . 百度学术
19. 陈陆望,王迎新,欧庆华,彭智宏,陈逸飞,李蕊瑞. 考虑覆岩结构影响的近松散层开采导水裂隙带发育高度预测模型研究——以淮北煤田为例. 工程地质学报. 2021(04): 1048-1056 . 百度学术
20. 翟景辉,任帅,王方田,毕寸光. 高瓦斯综放开采覆岩导气裂隙带高度演化规律研究. 矿业研究与开发. 2021(09): 92-97 . 百度学术
21. 井庆贺,张洪清,郝嘉伟,闫寿庆. 软岩矿井采空区下综采工作面参数优化设计研究. 中国矿业. 2021(12): 121-127 . 百度学术
22. 曹健,高斌,黄庆享. 长壁工作面开采上行裂隙混合型裂纹扩展机理. 煤矿安全. 2021(12): 188-193 . 百度学术
23. 高振宇,闫江平,庞长庆. 多煤层重复采动覆岩“两带”高度探测技术研究. 能源科技. 2020(07): 33-38 . 百度学术
其他类型引用(22)
计量
- 文章访问数: 142
- HTML全文浏览量: 8
- PDF下载量: 26
- 被引次数: 45