我国煤矿井下复杂地质条件下钻探技术与装备进展

Progress of drilling technologies and equipments for complicated geological conditions in underground coal mines in China

  • 摘要: 针对我国煤矿井下碎软煤层、坚硬岩层、冲击地压地层、破碎带、水敏性地层等复杂地质条件下钻探技术需求和存在的问题,总结了碎软煤层本煤层钻进与筛管护孔、碎软煤层梳状钻孔定向钻进、复杂顶板高位钻孔定向钻进、全断面硬岩穿层钻进、冲击地压卸压钻进等技术与装备方面的研究和应用情况。提出了碎软煤层双管护孔定向钻进及碎软煤层旋转定向钻进技术与装备的研究思路,有助于提升碎软煤层钻进的钻孔深度、护孔筛管直径和钻进效率等,而碎软煤层定向钻进技术与配套装备的完善也将促进碎软煤层瓦斯抽采模式的变革。防冲防突钻孔机器人的研究是煤矿井下复杂地质条件下钻探技术与装备的发展趋势,可为无人化矿井建设奠定基础;除此之外,还应着力解决好局部复杂地层对钻进的影响,更好地促进智能化钻探技术装备的进步,为煤矿安全高效生产提供保障。

     

    Abstract: According to the drilling technology requirements and problems under complicated geological conditions, such as broken soft coal seam, hard rock, rockburst strata, fractured zone, water-sensitive strata, etc, the research and application of drilling technology and screen pipe protection in broken soft coal seam, comb-like directional drilling technology in broken soft coal seam, high-level directional drilling technology in complicated roof strata, full-section across-layer drilling technology of hard rock, and drilling technology for pressure relief in rockburst strata were summed. This paper puts forward the research approaches of the technology and equipment of double-pipes directional drilling and rotary directional drilling in broken soft coal seam, which are helpful to improve the drilling depth, the diameter of the screen and the drilling efficiency, and the improvement of directional drilling technology and support equipment will also promote the change of gas extraction mode of broken soft coal seam. The research of drilling robots for gas outburst prevention and coal bump prevention are the development trend of drilling technology and equipment under complicated geological conditions in underground coal mines, which can promote the construction of unmanned coal mines. In addition, the influence of local complex strata on drilling should be solved to better promote the progress of intelligent drilling technology and equipment, so as to ensure the safe and efficient production of coal mines.

     

/

返回文章
返回