柿庄南区块3号煤层含气量三维建模

周优, 张松航, 唐书恒, 喻天成, 冯钊

周优, 张松航, 唐书恒, 喻天成, 冯钊. 柿庄南区块3号煤层含气量三维建模[J]. 煤田地质与勘探, 2020, 48(1): 96-104. DOI: 10.3969/j.issn.1001-1986.2020.01.013
引用本文: 周优, 张松航, 唐书恒, 喻天成, 冯钊. 柿庄南区块3号煤层含气量三维建模[J]. 煤田地质与勘探, 2020, 48(1): 96-104. DOI: 10.3969/j.issn.1001-1986.2020.01.013
ZHOU You, ZHANG Songhang, TANG Shuheng, YU Tiancheng, FENG Zhao. Gas content modeling of No.3 coal seam in district 3 of southern Shizhuang block[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 96-104. DOI: 10.3969/j.issn.1001-1986.2020.01.013
Citation: ZHOU You, ZHANG Songhang, TANG Shuheng, YU Tiancheng, FENG Zhao. Gas content modeling of No.3 coal seam in district 3 of southern Shizhuang block[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 96-104. DOI: 10.3969/j.issn.1001-1986.2020.01.013

 

柿庄南区块3号煤层含气量三维建模

基金项目: 

国家自然科学基金项目(41872178);国家科技重大专项课题(2017ZX05064-003)

详细信息
    作者简介:

    周优,1994年生,男,山西阳泉人,硕士研究生,从事煤层气地质与开发研究工作.E-mail:zhouyou@cugb.edu.cn

    通讯作者:

    张松航,1982年生,男,河南南阳人,博士,副教授,从事煤层气地质与开发研究工作.E-mail:zhangsh@cugb.edu.cn

  • 中图分类号: P618

Gas content modeling of No.3 coal seam in district 3 of southern Shizhuang block

Funds: 

National Natural Science Foundation of China (41872178)

  • 摘要: 煤层含气量对煤层气开发有直接影响。柿庄南区块煤层含气量相对较高,但开发过程中存在较多低效井,开展含气量三维地质建模有助于厘定含气性对煤层气井产量的影响。以沁水盆地柿庄南区块3号煤层为研究对象,运用多元回归分析方法依次建立基于埋深、灰分、挥发分及固定碳含量等参数的含气量预测公式及基于测井数据的煤岩工业分析各组分含量预测公式,最终得出柿庄南区块基于测井数据的含气量预测模型并应用于全区,与实测值对比表明预测结果较好。运用Petrel软件基于预测结果构建含气量模型,探讨3号煤层含气量三维分布特征。研究表明,区内3号煤层含气量介于11~20 m3/t,其主控因素为煤层埋深和构造部位。该模型对研究区煤层气井低产因素厘定和煤层气开发生产具有指导意义。移动阅读
    Abstract: The gas content of coal seam has a direct impact on the development of coalbed methane. The gas content of coal seam in southern Shizhuang block is high, but there are many inefficient wells in the development process, and the 3D geological modeling of gas content can help determine the influence of gas content on the production of CBM wells. In this paper, the research object is the No.3 coal seam in southern Shizhuang block. Calculated gas content from linear multivariate regression by using parameters of ash content, volatile matter content and fixed carbon content and simple burial depth matches well with laboratory measured values, and the coal proximate analysis parameters were predicted by log data. Finally, the gas content prediction equation of southern Shizhuang block based on logging data was established, and the equation was used to predict the gas content of No.3 coal seam in the research area. The predicted value is closed to the measured value. Then construction of gas content model based on the predicted value with Petrel software, and the 3D distribution characteristics of gas content in No.3 seam were analyzed. The research shows that the gas content of No.3 coal seam in the block is between 11-20 m3/t. The main control factors of gas content in the study area are the burial depth and the structural position. The model has guiding significance for the determination of low production factors of coalbed methane wells in the study area and the development of coalbed methane.
  • [1] 胡朝元,彭苏萍,赵士华,等. 煤层气储层参数多信息综合定量预测方法[J]. 煤田地质与勘探,2005,33(1):28-32.

    HU Chaoyuan,PENG Suping,ZHAO Shihua,et al. The qualitative prediction of the coalbed gas reservoir parameters[J]. Coal Geology & Exploration,2005,33(1):28-32.

    [2] 田敏,赵永军,颛孙鹏程. 灰色系统理论在煤层气含量预测中的应用[J]. 煤田地质与勘探,2008,36(2):24-27.

    TIAN Min,ZHAO Yongjun,ZHUAN Sunpengcheng. Application of grey system theory in prediction of coalbed methane content[J]. Coal Geology & Exploration,2008,36(2):24-27.

    [3] 陈刚. 准噶尔盆地彩南地区深层低阶煤吸附特征及其影响因素[J]. 煤田地质与勘探,2016,44(2):50-54.

    CHEN Gang. The adsorption characteristics and affecting factors of deep low-rank coal in Cainan area of Junggar basin[J]. Coal Geology & Exploration,2016,44(2):50-54.

    [4] 杨晓盈,李永臣,朱文涛,等. 贵州煤层气高产主控因素及甜点区综合评价模型[J]. 天然气地球科学,2018,29(11):1664-1671.

    YANG Xiaoying,LI Yongchen,ZHU Wentao,et al. The main controlling factors for production and the comprehensive evaluation model of desert area of coalbed methane in Guizhou Province[J]. Natural Gas Geoscience,2018,29(11):1664-1671.

    [5] 连承波,赵永军,李汉林,等. 煤层含气量的主控因素及定量预测[J]. 煤炭学报,2005,30(6):726-729.

    LIAN Chengbo,ZHAO Yongjun,LI Hanlin,et al. Main controlling factors analysis and prediction of coalbed gas content[J]. Journal of China Coal Society,2005,30(6):726-729.

    [6] 朱庆忠,孟召平,黄平,等. 沁南-夏店区块煤储层等温吸附特征及含气量预测[J]. 煤田地质与勘探,2016,44(4):69-72.

    ZHU Qingzhong,MENG Zhaoping,HUANG Ping,et al. Isothermal adsorption characteristics and gas content prediction of massive coal reservoirs in Qinnan-Xiadian district[J]. Coal Geology & Exploration,2016,44(4):69-72.

    [7] 黄银涛,周锋德,姚光庆. 随机模拟及遗传神经网络方法预测煤层气资源量[J]. 地质科技情报,2013,32(6):73-79.

    HUANG Yintao,ZHOU Fengde,YAO Guangqing. Application of stochastic modeling and genetic neural networks in predicting coalbed methane resources[J]. Geological Science and Technology Information,2013,32(6):73-79.

    [8] 晋香兰. 鄂尔多斯盆地侏罗系煤层含气性分析及地质意义[J]. 煤炭科学技术,2015,43(7):111-117.

    JIN Xianglan. Geological significances and analysis of gas potential for Jurassic coal seam in Ordos basin[J]. Coal Science and Technology,2015,43(7):111-117.

    [9] 田忠斌,董银萍,王建青,等. 沁水盆地榆社-武乡深部煤层地震相控反演及煤层气甜点预测[J]. 煤炭学报,2018,43(6):1605-1613.

    TIAN Zhongbin,DONG Yinping,WANG Jianqing,et al. Seismic facies controlled inversion and CBM sweet spot prediction in deep coal seam of Yushe-Wuxiang block in Qinshui basin[J]. Journal of China Coal Society,2018,43(6):1605-1613.

    [10] 彭苏萍,杜文凤,殷裁云,等. 基于AVO反演技术的煤层含气量预测[J]. 煤炭学报,2014,39(9):1792-1796.

    PENG Suping,DU Wenfeng,YIN Caiyun,et al. Coal-bed gas content prediction based on AVO inversion[J]. Journal of China Coal Society,2014,39(9):1792-1796.

    [11] 张延庆,程增庆. 用地震资料预测煤层气储层参数的方法初探[J]. 煤田地质与勘探,2002,30(4):24-26.

    ZHANG Yanqing,CHENG Zengqing. Preliminary study on the method of predicting CBM reservoir parameters with seismic data[J]. Coal Geology & Exploration,2002,30(4):24-26.

    [12] 唐颖,李乐忠,蒋时馨,等. 煤层含气量测井解释方法参数选择及适用性[J]. 煤田地质与勘探,2015,43(4):94-98.

    TANG Ying,LI Lezhong,JIANG Shixin,et al. Parameter selection and applicability of coal seam gas content logging interpretation method[J]. Coal Geology & Exploration,2015,43(4):94-98.

    [13] 梁亚林,原文涛. 测井预测煤层气含量及分布规律:以山西省沁水煤田为例[J]. 物探与化探,2018,42(6):1144-1149.

    LIANG Yalin,YUAN Wentao. The prediction of the content and distribution of coalbed gas:A case study in the Qinshui coalfield based on logging[J]. Geophysical & Geochemical Exploration,2018,42(6):1144-1149.

    [14] 原俊红,付玉通,宋昱,等. 深部煤层气储层测井解释技术及应用[J]. 油气地质与采收率,2018,25(5):24-31.

    YUAN Junhong,FU Yutong,SONG Yu. Logging interpretation technology and its application to deep coalbed methane reservoir[J]. Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.

    [15] 梁红艺,谢小国,罗兵,等. 煤层含气量评价方法研究与应用[J]. 特种油气藏,2016,23(3):45-48.

    LIANG Hongyi,XIE Xiaoguo,LUO Bing,et al. Coalbed methane content evaluation and application[J]. Special Oil & Gas Reservoirs,2016,23(3):45-48.

    [16] 李贵红,张泓,崔永君,等. 基于多元逐步回归分析的煤储层含气量预测模型:以沁水盆地为例[J]. 煤田地质与勘探,2005,33(3):22-25.

    LI Guihong,ZHANG Hong,CUI Yongjun,et al. A predictive model of gas content in coal reservoirs based on multiple stepwise regression analysis:A case study from Qinshui basin[J]. Coal Geology & Exploration,2005,33(3):22-25.

    [17] 朱庆忠,鲁秀芹,杨延辉,等. 郑庄区块高阶煤层气低效产能区耦合盘活技术[J]. 煤炭学报,2019,44(8):2547-2555.

    ZHU Qingzhong,LU Xiuqin,YANG Yanhui,et al. Coupled activation technology for low-efficiency productivity zones of high-rank coalbed methane in Zhengzhuang block,Shanxi,China[J]. Journal of China Coal Society,2019,44(8):2547-2555.

    [18] 伊永祥,唐书恒,张松航,等. 沁水盆地柿庄南区块煤层气井储层压降类型及排采控制分析[J]. 煤田地质与勘探,2019,47(5):118-126.

    YI Yongxiang,TANG Shuheng,ZHANG Songhang,et al. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. Coal Geology & Exploration,2019,47(5):118-126.

    [19] 孙强,吴建光,刘盛东,等. 柿庄南煤层气勘探钻井数据快速入库及三维可视化技术研究[J]. 中国煤炭地质,2014,26(3):66-69.

    SUN Qiang,WU Jianguang,LIU Shengdong,et al. Study on technologies of CBM drilling data fast database input and 3D visualization technology in Shizhuang south block,southern Qinshui basin[J]. Coal Geology of China,2014,26(3):66-69.

    [20] 张海娜,杜玉山,常涧峰,等. 应用Petrel软件建立复杂断裂系统断层模型[J]. 断块油气田,2009,16(5):46-47.

    ZHANG Haina,DU Yushan,CHANG Jianfeng,et al. Study on establishing fault model with complex fault system with Petrel software[J]. Fault-Block Oil & Gas Field,2009,16(5):46-47.

    [21] 于兴河,陈建阳,张志杰,等. 油气储层相控随机建模技术的约束方法[J]. 地学前缘,2005,12(3):237-244.

    YU Xinghe,CHEN Jianyang,ZHANG Zhijie,et al. Stochastic modeling for characteristics of petroleum reservoir constrained by facies[J]. Earth Science Frontiers,2005,12(3):237-244.

    [22] 淮银超,张铭,杨龙伟,等. 基于相控的煤层气藏三维地质建模[J]. 地球科学与环境学报,2017,39(2):275-285.

    HUAI Yinchao,ZHANG Ming,YANG Longwei,et al. Facies-controlled three-dimensional geological modeling for coalbed methane reservoir[J]. Journal of Earth Sciences and Environment,2017,39(2):275-285.

    [23]

    ZHOU Fengde,GUAN Zhenling. Uncertainty in estimation of coalbed methane resources by geological modelling[J]. Journal of Natural Gas Science and Engineering,2016,33:988-1001.

    [24]

    KARACAN C Ö,OLEA R A,GOODMAN G. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation[J]. International Joural of Coal Geology,2012,90/91:50-71.

    [25] 张新顺,王红军,马锋,等. 基于多元回归分析的致密油可采资源评价方法[J]. 石油与天然气地质,2018,39(6):1323-1335.

    ZHANG Xinshun,WANG Hongjun,MA Feng,et al. Method to assess recoverable tight oil based on multiple regression analysis[J]. Oil & Gas Geology,2018,39(6):1323-1335.

    [26] 田伟兵,李爱芬,韩文成. 水分对煤层气吸附解吸的影响[J]. 煤炭学报,2017,42(12):3196-3202.

    TIAN Weibing,LI Aifen,HAN Wencheng. Effect of water content on adsorption/desorption of coalbed methane[J]. Journal of China Coal Society,2017,42(12):3196-3202.

    [27] 黄兆辉,邹长春,杨玉卿,等. 沁水盆地南部TS地区煤层气储层测井评价方法[J]. 现代地质,2012,26(6):1275-1282.

    HUANG Zhaohui,ZOU Changchun,YANG Yuqing,et al. Coalbed methane reservoir evaluation from wireline logs in TS district,southern Qinshui basin[J]. Geoscience,2012,26(6):1275-1282.

  • 期刊类型引用(14)

    1. 吴见,张松航,贾腾飞,晁巍巍,彭文春,李世龙. 深部煤层钻孔保压取心流程分析及含气量测定方法. 石油实验地质. 2025(01): 163-172 . 百度学术
    2. 何文渊,黄文松,崔泽宏,刘玲莉,段利江,赵一波. 澳大利亚苏拉特区块低煤阶煤层气有利区预测与高效开发策略. 石油与天然气地质. 2025(01): 31-46 . 百度学术
    3. 申有义,王凯峰,唐书恒,张松航,郗兆栋,杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测. 岩性油气藏. 2024(04): 98-108 . 百度学术
    4. 刘同庆,宋玉龙,牟义,黄涛,汝亮,周绍辉,曹峰,孟国强. 基于Petrel的煤顶板三维地质模型及地应力模型构建. 煤矿安全. 2023(05): 100-105 . 百度学术
    5. 李勇,陈祖国,徐建军,周加佳,苏善博,张震. 寺河井田3号煤层含气量三维建模. 科技和产业. 2023(22): 275-280 . 百度学术
    6. 姜在炳,杨建超,李勇,庞涛. 基于三维地质建模技术的煤层气抽采效果评价——以晋城寺河煤矿为例. 煤田地质与勘探. 2022(02): 55-64 . 本站查看
    7. 高连平,宋培娟,王庄. 基于三维激光特征二次匹配的室外景观建模方法. 应用激光. 2022(03): 147-153 . 百度学术
    8. 郭广山,郭建宏,孙立春,刘丽芳,田永净. 基于随机森林算法的煤层含气量三维精细建模. 中国海上油气. 2022(04): 156-163 . 百度学术
    9. 徐冬生. 邢台市任泽区地热资源开发利用研究. 中国煤炭地质. 2022(S2): 66-70 . 百度学术
    10. 韩明辉,杨雪,胡海洋. 多薄煤层气藏三维地质建模技术及其应用——以黔西地区攀枝花煤矿为例. 天然气技术与经济. 2022(06): 1-8 . 百度学术
    11. 刘冰,张松航,唐书恒,王鹏飞,翟佳宇,纪朝琪. 无越流补给含水层对煤层气排采影响的数值模拟. 煤田地质与勘探. 2021(02): 43-53 . 本站查看
    12. 宣涛,王文升,刘灵童,李建荣,秦鹏. 不连续、薄互层煤层气地质建模技术——以澳大利亚苏拉特盆地为例. 中国煤炭地质. 2021(06): 31-36+68 . 百度学术
    13. 熊幸,韩文龙,赵石虎. 基于灰色关联的沁南柿庄地区含气量主控因素分析. 煤炭技术. 2021(07): 93-97 . 百度学术
    14. 刘同庆. 煤质工业分析测井解释及三维建模研究. 煤炭技术. 2021(09): 71-75 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  147
  • HTML全文浏览量:  10
  • PDF下载量:  21
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-06-09
  • 修回日期:  2019-10-27
  • 发布日期:  2020-02-24

目录

    /

    返回文章
    返回