Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors
-
摘要: 水力压裂是煤层气开发过程中增透增产的重要技术,压裂影响范围直接关系到水力压裂方案的设计和优化,而井下煤层水力压裂范围监测是亟待解决的技术难题。为了获取井下煤层水力压裂影响范围,根据压裂时煤层及其围岩的物性变化特征,采用井下微震监测技术对某煤矿3个煤层气井的压裂影响范围开展了监测,并且利用传统的钻孔观测法对监测结果进行了检验。结果表明:利用井下微震监测技术能够获得煤层钻孔水力压裂破坏范围,但是由于煤层较软,地震波衰减大,压裂区围岩或煤层破碎严重不利于裂隙的产生和扩展等,接收到的微震事件较少,因此微震监测结果圈定的压裂破坏范围比钻孔观测法小。Abstract: Hydraulic fracturing is an important technology for increasing permeability and productivity in the process of CBM development. The influence range of fracturing is directly related to the design and optimization of hydraulic fracturing scheme. As one of the key technologies, monitoring the sweep range of underground hydraulic fracturing in coal seam is a difficult technical problem to be solved urgently. In order to obtain the influence range of underground hydraulic fracturing in coal seam, according to the physical characteristics of coal seam and surrounding rock during fracturing, microseismic monitoring of fracturing influence range of three boreholes in a coal mine was carried out by using underground microseismic monitoring technology. The traditional borehole observation method was used to verify the monitoring results. The results show that the underground microseismic monitoring technology can obtain the fracturing damage range, but the fracturing damage range delineated by microseismic monitoring is smaller than that by borehole observation method. It is due to the soft coal seam and the large attenuation of seismic wave. The fractured surrounding rock or coal seam is seriously fractured, which is not conducive to the generation and expansion of fractures. So there fewer microseismic events are received.
-
-
[1] 张子敏,王佑贵. 瓦斯地质规律与瓦斯预测[M]. 北京:煤炭工业出版社,2005:67-90. [2] 俞启香. 矿井瓦斯防治[M]. 徐州:中国矿业大学出版社,1992:126-138. [3] 李安启,姜海,陈彩虹. 我国煤层气井水力压裂的实践及煤层裂缝模型选择分析[J]. 天然气工业,2004,24(5):91-94. LI Anqi,JIANG Hai,CHEN Caihong. Hydraulic fracturing practice and coalbed fracture model selecting for coalbed gas wells in China[J]. Natural Gas Industry,2004,24(5):91-94.
[4] 徐刚,彭苏萍,邓绪彪. 煤层气井水力压裂压力曲线分析模型及应用[J]. 中国矿业大学学报,2011,40(2):173-178. XU Gang,PENG Suping,DENG Xubiao. Hydraulic fracturing pressure curve analysis and its application to coalbed methane wells[J]. Journal of China University of Mining and Technology,2011,40(2):173-178.
[5] 任建刚,宋志敏,刘高峰,等. 煤层气井压裂对井下瓦斯抽采量与涌出浓度影响研究[J]. 煤炭工程,2013,45(11):96-98. REN Jiangang,SONG Zhimin,LIU Gaofeng,et al. Study on fracturing of coal bed methane well affected to has drainage value and gas emission concentration in underground mine[J]. Coal Engineering,2013,45(11):96-98.
[6] 康红普,冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报,2012,37(12):1953-1959. KANG Hongpu,FENG Yanjun. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution[J]. Journal of China Coal Society,2012,37(12):1953-1959.
[7] 朱海波,杨心超,王瑜,等. 水力压裂微地震监测的震源机制反演方法应用研究[J]. 石油物探,2014,53(5):556-561. ZHU Haibo,YANG Xinchao,WANG Yu,et al. The application of microseismic source mechanism inversion in hydraulic fracturing monitoring[J]. Geophysical Prospecting for Petroleum,2014,53(5):556-561.
[8] 王玉海,王庆红,闫桂芳,等. 煤层气井压裂效果评价方法田[J]. 油气井测试,2010,19(5):44-47. WANG Yuhai,WANG Qinghong,YAN Guifang,et al. Evaluation method of fracturing effect for coalbed gas wells[J]. Well Testing,2010,19(5):44-47.
[9] 陈海潮,唐有彩,钮凤林,等. 利用微地震参数评估水力压裂改造效果研究进展[J]. 石油科学通报,2016,1(2):198-208. CHEN Haichao,TANG Youcai,NIU Fenglin,et al. Recent advances in microseismic monitoring and implications for hydraulic fracturing mapping[J]. Petroleum Science Bulletin,2016,1(2):198-208.
[10] 刘博,徐刚,杨光,等. 煤层气水力压裂微地震监测技术在鄂尔多斯盆地东部M地区的应用[J]. 测井技术,2017,41(6):708-712. LIU Bo,XU Gang,YANG Guang,et al. Microseismic monitoring technology of coalbed methane hydraulic fracturing in M area of Eastern Ordos[J]. Logging Technology,2017,41(6):708-712.
[11] 李楠,王恩元,GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报,2017,42(1):83-96. LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines present status and future prospects[J]. Journal of China Coal Society,2017,42(1):83-96.
[12] WARPINSKI N R,MAYERHOFER M J,VINCENT M C,et al. Stimulating unconventional reservoirs:Maximizing network growth while optimizing fracture conductivity[J]. Journal of Canadian Petroleum Technology,2009,48(10):39-51.
[13] 李红梅. 微地震监测技术在非常规油气藏压裂效果综合评估中的应用[J]. 油气地质与采收率,2015,22(3):129-134. LI Hongmei. Application of micro-seismic monitoring technology to unconventional hydrocarbon reservoir fracturing evaluation[J]. Petroleum Geology and Recovery Efficiency,2015,22(3):129-134.
[14] 赵博雄,王忠仁,刘瑞,等. 国内外微地震监测技术综述[J]. 地球物理学进展,2014,29(4):1882-1888. ZHAO Boxiong,WANG Zhongren,LIU Rui,et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics,2014,29(4):1882-1888.
[15] 王云宏,董蕊静. 煤层气井水力压裂微地震正演模拟研究[J]. 煤炭科学技术,2016,44(增刊1):137-141. WANG Yunhong,DONG Ruijing. Study on micro-seismic forward modeling in coalbed methane well hydraulic fracturing[J]. Coal Science and Technology,2016,44(S1):137-141.
-
期刊类型引用(12)
1. 石垚,雷瀚,杨新路,徐世达. 煤矿坚硬顶板灾害水力压裂防治技术监测及评估. 煤炭工程. 2024(02): 122-130 . 百度学术
2. 王国举 ,赵立松 ,高刚 ,周金艳 . 基于井下煤层水力压裂的微震时空发育规律研究. 煤炭技术. 2024(05): 207-211 . 百度学术
3. 李斌,杨帆,张红杰,冯雷,安琦,郝召兵. 神府区块深部煤层气高效开发技术研究. 煤田地质与勘探. 2024(08): 57-68 . 本站查看
4. 康红普,冯彦军,张震,赵凯凯,王鹏. 煤矿井下定向钻孔水力压裂岩层控制技术及应用. 煤炭科学技术. 2023(01): 31-44 . 百度学术
5. 贾进章,王东明,李斌. 水力压裂有效压裂半径的影响因素研究. 中国安全生产科学技术. 2022(06): 58-64 . 百度学术
6. 钟坤,陈卫忠,赵武胜,秦长坤,曹怀轩,谢华东. 煤矿坚硬顶板分段水力压裂防冲效果监测与评价. 中南大学学报(自然科学版). 2022(07): 2582-2593 . 百度学术
7. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 . 百度学术
8. 闫文超,崔伟雄,段建华,丛琳,蔺兑波. 井-孔联合微震技术在工作面监测中的应用. 煤矿安全. 2021(11): 95-99 . 百度学术
9. 王选琳,李鹏,周东平,王凯. 煤矿井下水力加砂压裂技术工程应用研究. 河南城建学院学报. 2020(03): 29-37 . 百度学术
10. 姚学庆,时歌声,陈冬冬,郭艳飞,王浩昌. 基于含水率变化的压裂半径考察. 能源与节能. 2020(10): 23-25 . 百度学术
11. 宋延秋. 井下压裂实时监测技术及其应用. 化学工程与装备. 2020(10): 120+126 . 百度学术
12. 邓帅奇,李东会,赵朋朋. 基于煤岩特征弹性参数的掘进煤巷地震波超前探测研究. 煤矿安全. 2020(12): 192-197 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 211
- HTML全文浏览量: 72
- PDF下载量: 32
- 被引次数: 21