Mechanism of Ordovician limestone water inrush from the floor of caving mining face in thick coal seam and water hazard detection technology of nearly horozontal borehole
-
摘要: 为研究受奥陶系灰岩(简称“奥灰”)水威胁的工作面能否采取放顶煤开采,选择准格尔煤田黄玉川煤矿研究奥灰突水机理。该矿6上煤底板承受奥灰水压为0~4.49 MPa,隔水层厚度为54.296~75.78m,6上煤底板奥灰突水系数为0~0.085MPa/m,绝大部分区域小于临界突水系数0.06 MPa/m;而一盘区巷道掘进遇断层时曾发生多次突水,说明该区具有不同的突水机理。矿井断层、裂隙发育,存在隐伏陷落柱,对断层、陷落柱的放水试验发现,北北东向地质优势面控制奥灰含水层富水性。在黄玉川煤矿216上01工作面,通过定水头压水试验测得底板最大破坏深度为34.9 m,阐明了准格尔煤田底板奥灰强渗通道耦合底板破坏的突水机理,改变了从纵向上认识底板奥灰突水的传统,从平面上施工小角度定向长钻孔探查垂向强渗通道,并进一步局部注浆加固,解决了采掘过程中的奥灰水害。Abstract: In order to study whether top coal caving can be adopted in the working face threatened by Ordovician limestone water, Huangyuchuan coal mine of Jungar coalfield was chosen to study the water inrush mechanism. The water pressure of the floor of coal seam 6upper is 0~4.49 MPa and the thickness of water insulation layer is 54.296 m, while the average water inrush coefficient of the upper floor is 0~0.085 MPa/m which is lower than the critical water inruch coefficent. In fact, water inrush have occurred many times when tunneling across faults. It indicates that there is different water inrush mechanism in the area.The faults and fissures are developed and there are hidden karst collapsed columns in the mine, and the outflow test results in faults and karst collapsed columns shows that the dominant structural plane in the north-east direction controls the water enrichment of Ordovician aquifers. In working face 01 in 21 panel of 6upper coal seam of Huangyuchuan coal mine, the maximum floor failure depth measured by pumping test was 34.9 m. This paper expounds the mechanism of water inrush caused by coupling coal floor damage and Ordovician strong seepage channel, which changes the traditional understanding of water inrush through vertical water-conducting from Ordovician aquifer. Nearly horizontal directional long holes have been drilled to explore and reinforce the vertical strong seepage channels, so Ordovician limestone water hazard in the process of mining is solved.
-
-
[1] 国家煤矿安全监察局. 煤矿安全规程[M]. 北京:煤炭工业出版社,2016. [2] 煤炭科学研究总院西安分院,峰峰矿务局. 华北型煤矿奥灰水防治研究[M]. 西安:陕西人民出版社,1990. [3] 刘其声. 关于突水系数的讨论[J]. 煤田地质与勘探,2009,37(4):34-37. LIU Qisheng. A discussion on water inrush coefficient[J]. Coal Geology & Exploration,2009,37(4):34-37.
[4] 孟召平,高延法. 矿井突水危险性评价理论与方法[M]. 北京:科学出版社,2011. [5] 方曙晨,赵喜海,张风杰. 厚煤层综放工作面底板出水机理分析及防治[J]. 煤炭技术,2004,23(11):63-65. FANG Shuchen,ZHAO Xihai,ZHANG Fengjie. Analysis and prevention on floor at combined mining face in thick seam[J]. Coal Technology,2004,23(11):63-65.
[6] 张风达. 深部煤层底板变形破坏机理及突水评价方法研究[D].北京:中国矿业大学(北京),2016. [7] 郑纲. 煤矿底板突水机理与底板突水实时监测技术研究[D]. 西安:长安大学,2004. [8] 郑纲. 岩体裂隙三轴应力渗透规律的试验研究[J]. 工程地质学报,2004,12(1):30-33. ZHENG Gang. Experimental study on the permeability regularities of rock cracks under triaxial compression[J]. Journal of Engineering Geology,2004,12(1):30-33.
[9] 郑纲,门玉明,靳德武. 水压致裂技术测试底板岩体张开型临界应力强度因子的研究[J]. 煤田地质与勘探,2004,32(1):43-45. ZHENG Gang,MEN Yuming,JIN Dewu. Research on measuring tensile critical stress intensity factor of floor rock by hydraulic fracturing technique[J]. Coal Geology & Exploration,2004,32(1):43-45.
[10] 郑纲,门玉明,庞西岐. 东庞矿9103工作面底板突水前兆实时监测技术研究[J]. 煤炭科学技术,2004,32(3):4-7. ZHENG Gang,MEN Yuming,PANG Xiqi. On time monitoring and measuring technology before water inrush disaster occurred from floor of No.9103 coal mining face in Dongpang mine[J]. Coal Science and Technology,2004,32(3):4-7.
[11] 蒋勤明. 大采深工作面煤层底板采动破坏深度测试[J]. 煤田地质与勘探,2009,37(4):30-33. JIANG Qinming. Coal floor strata failure depth test of working face at big mining depth[J]. Coal Geology & Exploration,2009,37(4):30-33.
[12] 高召宁,郑志伟,潘继良,等. 采动与承压水耦合作用下煤层底板的力学效应及破坏机理分析[J]. 中国安全生产科学技术,2016,12(3):10-14. GAO Zhaoning,ZHENG Zhiwei,PAN Jiliang,et al. Analysis on mechanical effect and damage mechanism of coal seam floor under the coupling action of mining and confined water[J]. Journal of Safety Science and Technology,2016,12(3):10-14.
[13] 古江林. 急倾斜煤层巷道放顶煤基本参数实验研究[D]. 西安:西安科技大学,2011. [14] 陈忠辉,胡正平,李辉,等. 煤矿隐伏断层突水的断裂力学模型及力学判据[J]. 中国矿业大学学报,2011,40(5):673-677. CHEN Zhonghui,HU Zhengping,LI Hui,et al. Fracture mechanical model and criteria of insidious fault water inrush in coal mines[J]. Journal of China University of Mining & Technology,2011,40(5):673-677.
-
期刊类型引用(12)
1. 武强,朱慧聪,胡辰睿,魏新疆,侯柱平,肖璇,刘学,李俊杰,赵佳,程一帆,杨亮,邢一迪,曾一凡. 我国煤层水害基本架构及发展情势. 煤炭工程. 2024(10): 12-21 . 百度学术
2. 杨忠,李晓龙. 带压开采煤层底板破坏深度研究. 能源与环保. 2022(05): 306-310 . 百度学术
3. 王兴明,刘英锋,南生辉,郭康,尚荣. 奥灰承压水上采场底板沿工作面倾向破坏特征分析. 煤炭科学技术. 2022(12): 206-214 . 百度学术
4. 姬东,汪万里,崔风,白振华. 综采放顶煤工作面常见问题及处理方法. 陕西煤炭. 2021(02): 103-106+130 . 百度学术
5. 任辰锋. 构建煤矿水害“十位一体”防治技术体系理论与实践. 能源科技. 2021(02): 22-25 . 百度学术
6. 李晓龙. 煤矿井下水砂突涌钻孔封孔技术研发与应用. 煤田地质与勘探. 2021(04): 192-197 . 本站查看
7. 赵双全. 层次分析法在工作面底板突水影响因素分析的应用. 现代矿业. 2020(04): 200-203 . 百度学术
8. 赵利军,曹恒,朱马别克·达吾力. 复合隔水条件下煤层群涌水控制因素及对瓦斯赋存的影响. 中国安全生产科学技术. 2020(07): 55-60 . 百度学术
9. 曹思文,张民,张振国,朱术云. 下组煤某工作面带压开采奥灰突水危险性探究. 采矿技术. 2020(05): 98-102 . 百度学术
10. 王高峰. 厚煤层综放开采底板水害探查技术. 自动化应用. 2020(09): 136-137 . 百度学术
11. 侯俊华,孟凡贞,冯鲁顺. 东滩煤矿采区构造复杂程度及突水危险性分区对比探究. 现代矿业. 2020(09): 191-194+211 . 百度学术
12. 王志荣,宋沛,温震洋,陈玲霞. 裂隙性储层水平井起裂行为的控制. 工程科学学报. 2020(11): 1449-1456 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 205
- HTML全文浏览量: 37
- PDF下载量: 33
- 被引次数: 17